簡易檢索 / 詳目顯示

研究生: 林建勳
Chien-Hsun Lin
論文名稱: 元素釋放法與有限元素法之聯合應用
Combined Applications of the Element Free Galerkin Method and Finite Element Method
指導教授: 潘誠平
Chan-Ping Pan
口試委員: 呂良正
none
王仲宇
none
林昌佑
none
黃世建
none
鄭蘩
none
謝佑明
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 104
中文關鍵詞: 元素釋放法有限元素法結合
外文關鍵詞: element free Galerkin method, finite element method, combined
相關次數: 點閱:207下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本研究提出一虛擬質點之概念,藉由有限元素法位移內插得到虛擬質點位移參數之特性,將有限元素法與元素釋放法聯結使用。內容包含三個部份:一、以虛擬質點將有限元素法位移場與元素釋放法位移場結合;二、將有限元素法不連續梯度場藉由虛擬質點與移動式最小誤差平方和修復成連續梯度場;三、以不收斂之有限元素法結果為基礎,將元素釋放法依虛擬質點順序,進行局部力平衡疊代求解。
  本研究成果顯示,藉由虛擬質點的增加,可將有限元素法區域與元素釋放法區域更有效接合,並減少兩區域邊界位移與梯度差異量。亦可因虛擬質點數量增加,使修復後之平滑化位移場與梯度場更接近有限元素法結果。局部力平衡疊代求解,也因虛擬質點數量增加,而改善數值模擬結果。


A concept of “virtual particles” is developed in this study. Virtual particles are interpolated from the finite element displacement field. Through the usage of virtual particles, both element free Galerkin method and finite element method can be combined in an analysis. Three problems are solved in this study. The first is to combine both displacement fields; the second is to present the solved finite element displacement field by element free formulation; The third is an iterative solution procedure by the element free formulation.
The obtained results show that virtual particles can combine two displacement fields success fully. Also, both the displacement field and the strain field are continuous. The iterative solution procedure can improve the local solution accuracy.

中文摘要……………………………………………………………I 英文摘要……………………………………………………………II 誌謝…………………………………………………………………III 目錄…………………………………………………………………IV 圖表目錄……………………………………………………………VII 第一章 緒論………………………………………………………1 1.1 研究動機…………………………………………………1 1.2 研究目的…………………………………………………3 1.3 文獻回顧…………………………………………………3 1.4 研究內容…………………………………………………6 第二章 理論基礎…………………………………………………8 2.1 有限元素法………………………………………………8 2.1.1 平面應力四點元素………………………………9 2.1.2 平面應力八點元素………………………………11 2.1.3 二點線性軸力元素………………………………12 2.2 元素釋放法………………………………………………12 2.2.1 移動式最小誤差平方和…………………………13 2.2.2 形狀函數特性……………………………………16 2.2.3 權重函數…………………………………………17 2.3 平衡方程式………………………………………………20 2.3.1 有限元素法平衡方程式…………………………23 2.3.2 元素釋放法平衡方程式…………………………24 第三章 元素釋放法與有限元素法結合……………………………26 3.1 數學模式…………………………………………………26 3.2 本文與文獻建議方法之比較……………………………33 3.3 邊界位移諧和差異量……………………………………34 3.4 範例………………………………………………………34 3.4.1 單一元素中央以元素釋放法代替問題…………35 3.4.2 懸臂梁承受水平均佈力…………………………36 3.4.3 懸臂樑自由端承受向下集中力…………………37 3.4.4 無限開孔平版承受水平均佈力…………………38 3.5 小結………………………………………………………39 第四章 移動式最小誤差平方和修復有限元素法結果……………41 4.1 數學模式…………………………………………………42 4.2 分析流程…………………………………………………44 4.3 能量差異量………………………………………………45 4.4 範例………………………………………………………45 4.4.1 軸力桿件承受軸向均佈體積載重………………46 4.4.2 簡支樑承受集中力………………………………47 4.4.3 無限開孔平版承受水平均佈力…………………48 4.5 小結………………………………………………………49 第五章 元素釋放法疊代進行局部力平衡求解……………………51 5.1 數學模式…………………………………………………51 5.2 分析流程…………………………………………………54 5.3 範例………………………………………………………55 5.3.1 軸力桿件承受軸向均佈體積載重與均佈載重…55 5.3.2 簡支樑全樑承受均佈力…………………………57 5.3.3 懸臂樑承受力偶…………………………………58 5.4 小結………………………………………………………58 第六章 結論與建議…………………………………………………60 6.1 結論………………………………………………………60 6.2 建議………………………………………………………62 參考文獻………………………………………………………………63 圖………………………………………………………………………70 表………………………………………………………………………102

1.Belytschko, T., Lu, Y. Y. and L. Gu, “Element-free Galerkin methods,” International Journal for Numerical Methods in Engineering, Vol.37, pp.229-256 (1994).
2.Lu, Y. Y., Belytschko, T. and L. Gu, “A new implementation of the element free Galerkin method,” Computer Methods in Applied Mechanics Engineering, Vol.113, pp.397-414 (1994).
3.Belytschko, T., Lu, Y. Y. and L. Gu, “Crack propagation by element-free Galerkin methods,” Engineering Fracture Mechanics, Vol.51, pp.295-315 (1995).
4.Krysl, P. and T. Belytschko, “Analysis of thin plates by the element-free Galerkin methods,” Computational Mechanics, Vol.17, pp.26-35 (1995).
5.Fleming, M., Chu, Y. A., Moran, B. and T. Belytschko, “Enriched element-free Galerkin methods for crack tip fields,” International Journal for Numerical Methods in Engineering, Vol.40, pp.1483-1504 (1997).
6.Zhu, T. and S. N. Atluri, “A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method,” Computational Mechanics, Vol. 21, pp.211-222 (1998).
7.Mukherjee, Y. X. and S. Mukherjee, “On Boundary conditions in the element-free Galerkin method,” Computational Mechanics, Vol.19, pp.264-270 (1997).
8.Gavete, L., Benito, J. J., Falcon, S. and A. Ruiz, “Implementation of essential boundary conditions in a meshless method,” Communications in Numerical Methods in Engineering, Vol.16, pp.409-421 (2000).
9.Fernandez-Mendez, S. and A. Huerta, “Imposing essential boundary conditions in mesh-free methods,” Computer Methods in Applied Mechanics Engineering, Vol.193, pp.1257-1275 (2004).
10.Lee, S. H. and Y. C. Yoon, “Numerical prediction of crack propagation by an enhanced element-free Galerkin method,” Nuclear Engineering and Design, Vol.227, pp.257-271 (2004).
11.Belytschko, T., Organ, D. and Y. Krongauz, “A coupled finite element-element-free Galerkin method,” Computational Mechanics, Vol.17, pp.186-195 (1995).
12.Gu, Y. T. and G. R. Liu, “A coupled element free Galerkin/boundary element method for stress analysis of two-dimension solids,” Computer Methods in Applied Mechanics Engineering, Vol.190, pp.4405-4419 (2001).
13.Krongauz, Y. and T. Belytschko, “Enforcement of essential boundary condition in meshless approximation using finite elements,” Computer Methods in Applied Mechanics Engineering, Vol.131, pp.133-145 (1996).
14.Rao, B. N. and S. Rahman, “An enriched meshless method for non-linear fracture mechanics,” International Journal for Numerical Methods in Engineering, Vol.59, pp.197-223 (2004).
15.D. Hegen, “Element-free Galerkin methods in combination with finite element approaches,” Computer Methods in Applied Mechanics Engineering, Vol.135, pp.143-166 (1996).
16.Rao, B. N. and S. Rahman, “A coupled meshless-finite element method for fracture analysis of cracks,” International Journal of Pressure Vessels and Piping, Vol.78, pp.647-657 (2001).
17.Ho, S. L., Yang, S., Ni, G., Wong, H. C. and Y. Wang, “Numerical analysis of thin skin depths of 3-D eddy-current problems using a combination of finite element and meshless methods,” IEEE Transactions on Magnetics, Vol.40, pp.1354-1357 (2004).
18.Huerta, A. and S. Fernandez-Mendex, “Enrichment and coupling of the finite element and meshless methods,” International Journal for Numerical Methods in Engineering, Vol.48, pp.1615-1636 (2000).
19.Tsai, H. C. and C. P. Pan, “Element free formulation used for connecting domain boundaries,” Journal of the Chinese Institute of Engineers, Vol.27, pp.585-596 (2004).
20.Oden, J. T. and H. J. Brauchli, “On the calculation of consistent stress distributions in finite element approximations,” International Journal for Numerical Methods in Engineering, Vol.3, pp.317-325 (1971).
21.Hinton, E. and J. S. Campbell, “Local and global smoothing of discontinuous finite element functions using a least squares methods,” International Journal for Numerical Methods in Engineering, Vol.8, pp.461-480 (1974).
22.Oden, J. T. and J. N. Reddy, “Note on an approximate method for computing consistent conjugate stress in elastic finite elements,” International Journal for Numerical Methods in Engineering, Vol.6, pp.55-61 (1973).
23.Zienkiewicz, O. C. and J. Z. Zhu, “The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique,” International Journal for Numerical Methods in Engineering, Vol.33, pp.1331-1364 (1992).
24.Zienkiewicz, O. C. and J. Z. Zhu, “The superconvergent patch recovery (SPR) and adaptive finite element refinement,” Computer Methods in Applied Mechanics Engineering, Vol.101, pp.207-224 (1992).
25.Blacker, T. and T. Belytschko, “Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements,” International Journal for Numerical Methods in Engineering, Vol.37, pp.517-536 (1994).
26.Belytschko, T. and T. Blacker, “Enhanced derivative recovery through least square residual penalty,” Applied Numerical Mathematics, Vol.14, pp.55-68 (1994).
27.Tessler, A., Riggs, H. R. and S. C. Macy, “A variational method for finite element stress recovery and error estimation,” Computer Methods in Applied Mechanics Engineering, Vol.111, pp.369-382 (1994).
28.Riggs, H. R. and A. Tessler, “Continuous versus wireframe variational smoothing methods for finite element stress recovery,” Proc. Advances in post and preprocessing for finite element technology, Computational Structure Technology, Athens, pp.137-144 (1994).
29.Riggs, H. R., Tessler, A. and H. Chu, “C1-Continuous stress recovery in finite element analysis,” Computer Methods in Applied Mechanics Engineering, Vol.143, pp.299-316 (1997).
30.Tessler, A., Riggs, H. R., Freese, C. E. and G. M. Cook, “An improved variational method for finite element stress recovery and a posteriori error estimation,” Computer Methods in Applied Mechanics Engineering, Vol.155, pp.15-30 (1998)
31.Wiberg, N. S. and F. Abdulwahab, “Patch recovery based on superconvergent derivatives and equilibrium,” International Journal for Numerical Methods in Engineering, Vol.36, pp.2703-2724 (1993).
32.Tabbara, M., Blacker, T. and T. Belytschko, “Finite element derivative recovery by moving least square interpolants,” Computer Methods in Applied Mechanics Engineering, Vol.117, pp.211-223 (1994)
33.Cook, R. D., Malkus, D. S. and M. E. Plesha, Concepts and applications of finite element analysis, Third edition, John Wiley & Sons, New York, 1989
34.Lancaster, P. and K. Salkauskas, “Surface generated by moving least squares methods,” Math. Comp., Vol. 37, pp.141-158 (1981).
35.洪維聰、潘誠平,「二維無元素法之網格自動佈建」,國立台灣科技大學營建工程系碩士論文(2004)。
36.Timoshenko, S. P. and J. N. Goodier, Theory of elasticity, Third edition, McGraw-Hill, New York (1986).
37.Lin, C. H. and C. P. Pan, “Conjunction of displacement fields of the element free Galerkin method and finite element method,” Tamkang Journal of Science and Engineering (accept).

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)

QR CODE