簡易檢索 / 詳目顯示

研究生: 梁凱任
Kai-Ren Liang
論文名稱: 改良式餐廳廚房排油煙機之氣動力與洩漏特性
Aerodynamic Performance and Leakage Characteristics of an Improved Commercial Kitchen Hood
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 許清閔
Ching-Min Hsu
陳佳
Jia-Kun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 259
中文關鍵詞: 餐廳抽油煙機廂型抽油煙機氣動力改良邊界層分離控制器三角結構之渦流產生器
外文關鍵詞: Improved Commercial Kitchen Hood
相關次數: 點閱:327下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討「氣動力改良式餐廳廚房排油煙機」在高溫加熱時之空氣動力特性以及汙染物洩漏的程度。此一改良式排油煙機包括數個特徵結構:(1) 狹長型吸氣槽、(2) 狹長型吹氣槽、(3) 三角結構的渦流產生器、(4) 氣流偏折板、(5) 入口邊界層分離控制器。利用雷射輔助煙霧流場可視化法觀察排油煙在吸氣速度與火力搭配下之煙霧流動型態,使用雷射都卜勒測速儀(Laser Doppler Anemometry, LDA)量測排油煙機內部的速度場,並測量在排油煙機內部釋放的追蹤氣體(SF6)洩漏至外部的濃度。由於第(1)、(4)、(5)項特徵結構的設計,使得水平面煙霧流場顯現大型渦流結構,垂直面流場呈現後傾現象,煙霧被包含於後傾渦流結構中,遠離排油煙機的入口。由於排油煙機頂板有第(2)、(3)項特徵結構(吹氣槽與渦流產生器)的裝設,形成隔絕渦流,使得因高溫浮力效應往上方排油煙機入口推擠之煙霧不易洩漏至外界。當瓦斯流量Qfuel = 4、10、16 LPM (瓦斯爐燃燒熱功率 q ̇_fuel = 7.6、18.9、30.2 kW)時,排油煙機的狹長型吸入口吸氣速度Vs > 12、14、16 m/s (面速度Vf > 0.18、0.20、0.24 m/s)即完全無觀察到煙霧洩漏。但是,若狹長型吸入口吸氣速度Vs 小於臨界值時,可觀察到煙霧由頂板前方洩漏至外界。SF6追蹤氣體測試結果顯示:當狹長型吸入口吸氣速度Vs 大於臨界值時,在排油煙機開口面所測得的SF6時間平均洩漏濃度Cave  0.006 ppm,瞬間洩漏濃度Cmax  0.011 ppm,幾乎達到零洩漏的程度。過去研究顯示,傳統廂型餐廳排油煙機在q ̇_(fuel )= 2.8 kW,面速度Vf = 0.23、0.27 m/s時,在排油煙機開口面所測得的Cave  15.366、3.289 ppm;Cmax  30.162、5.928 ppm。氣動力改良式餐廳廚房排油煙機因為使用特徵結構改良了流場型態,所以阻擋油煙洩漏的能力遠比傳統廂型餐廳排油煙機高很多。


    The flow properties and oil mist leakage characteristics of an aerodynamically-improved commercial kitchen hood (AI Hood) were studied experimentally. The AI Hood consisted of five featured structures: (1) a suction slot, (2) a slot jet, (3) a vortex generator, (4) two air-stream deflection plates, and (5) inlet boundary-layer separation controller (BSC). The laser-light sheet assisted smoke flow visualization technique was employed to examine the flow patterns. A laser Doppler Anemometry was used to measure the velocity field. The tracer gas (SF6) detection method was used to measure the leakage concentrations of tracer gas at the hood face. Due to the featured structures (1), (4), and (5), large backward-inclined vortical flows were created. The oil mist was attracted in the large vortices and exhausted outdoors. The backward inclination of vortices reduced the risk of oil-mist leakage. Due to the structures (2) and (3), the outward leakage from the leading edge of hood ceiling was isolated. At the propane fuel flow rate Qfuel = 4, 10, and16 LPM (Combustion Heating Power q ̇_fuel = 7.6, 18.9, and 30.2 kW), no oil-mist leakage was observed at the suction slot velocity VS > 12, 14, and 16 m/s (face velocity Vf > 0.12, 0.20, and 0.24 m/s), respectively. The tracer-gas (SF6) detection experimental results corresponding to the aforementioned flow conditions revealed that the time-averaged and instantaneous leakage concentrations were Cave  0.006 and Cinst  0.011 ppm, respectively. Previous investigations on the conventional commercial kitchen hood showed that at q ̇_fuel= 2.8 kW and Vf = 0.23 and 0.27 m/s, the time-averaged and instantaneous leakage levels were Cave  15.366 and 3.289 ppm as well as Cinst  30.162 and 5.928 ppm, respectively. The AI Hood apparently presented significantly lower (almost negligible) leakage levels at lower suction flow rates when compared with those of the conventional commercial kitchen hood.

    摘要 i Abstract ii 誌謝 iii 符號索引 vii 表圖索引 viii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目的 4 第二章 實驗方法與設備 6 2.1 實驗設備 6 2.1.1 改良式餐廳廚房排油煙機的設備架構 6 2.1.2 電子快速爐 7 2.1.3 抽氣機 7 2.1.4 調速平板移動機構 8 2.2 流場可視化 8 2.2.1 浮子流量計 8 2.2.2 煙霧微粒產生系統與微粒特性 8 2.2.3 煙霧釋放器 10 2.2.4 雷射光頁產生器 11 2.2.5 數位攝影機 11 2.3 流場速度量測 11 2.3.1 煙霧產生器 11 2.3.2 自製煙霧釋放器 11 2.3.3 雷射都卜勒測速儀 12 2.3.4 三維移動機構 12 2.4 局部洩漏濃度測試 13 2.4.1 電子式流量計 13 2.4.2 MIRAN濃度測量儀 13 2.4.3 六氟化硫釋放器 14 2.5 量測儀器 14 2.5.1 文氏管流量計 14 2.5.2 壓力轉換器 14 2.5.3 熱線風速計 15 2.6 實驗方法 15 2.6.1 流場可視化 15 2.6.2 流場速度量測 16 2.6.3 靜態測試洩漏濃度量測 16 第三章 靜態流場型態 18 3.1 垂直面流動型態 19 3.1.1 中央對稱面 x = 0 (有下吹式氣簾) 19 3.1.2右側截面 x = 31 cm 21 3.1.3右側截面 x = 61 cm 24 3.2 水平面流動型態 27 3.2.1 水平面 z = 25 cm (有下吹式氣簾) 27 3.2.2 水平面 z = 70 cm (有下吹式氣簾) 27 3.3 排油煙機前方放置假人(有下吹式氣簾) 28 3.3.1假人距離排油煙機入口面S = 0 & S = 15 cm 28 3.4 排油煙機頂部在冷流場的流動型態 30 第四章 流場速度量測 32 4.1 垂直面之速度量測 33 4.1.1 量測結果 33 第五章 動態流場型態 34 5.1 垂直面流動型態 34 5.1.1 中央對稱面 x = 0 34 5.1.2 右側截面 x = 31 cm 35 5.1.3 右側截面 x = 61 cm 36 5.2 水平面流動型態 37 5.2.1 水平面 z = 25 cm 37 5.2.2 水平面 z = 70 cm 37 5.2.3 比較 38 第六章 靜態測試洩漏濃度 39 6.1局部洩漏濃度測量 39 6.1.1 檢測方法 39 6.1.2 檢測結果 40 6.2假人站立局部洩漏濃度 41 6.2.1 檢測方法 41 6.2.2 檢測結果 43 6.3 假人鼻部、腹部洩漏濃度 44 6.3.1 靜態假人鼻部洩漏濃度 44 6.3.2 靜態假人腹部洩漏濃度 46 第七章 與傳統廚房排油煙機比較 49 7.1 與傳統餐廳廚房排油煙機比較 49 7.1.1 靜態流場比較 49 7.1.2 濃度洩漏比較 50 第八章 結論 51 8.1 結論 51 8.2 建議 52 參考文獻 53

    [1] 亞東紀念醫院,〈媽媽! 為了一家大小,請您炒菜「戴口罩」。〉http://www.femh.org.tw/epaperadmin/viewarticle.aspx?ID=477。
    [2] 行政院勞工委員會,〈有機溶劑中毒預防規則〉,行政院勞工委員會,台北,1991。
    [3] 行政院勞工委員會,〈特定化學物質危害預防標準〉,行政院勞工委員會,台北,1991。
    [4] 內政部,〈鉛中毒預防規則〉,內政部,台北,1974。
    [5] 內政部,〈粉塵危害預防標準〉,內政部,台北,1981。
    [6] 行政院勞工委員會,〈勞工安全衛生組織管理及自動檢查辦法〉,行政院勞工委員會,台北,1993。
    [7] Numano, Y. (沼野雄志),〈局排設計教室,第三版〉,中央勞動災害防止協會,東京,1996。
    [8] 勞委會勞工安全衛生研究所,〈作業場所空氣有害物預估與控制研究-側風對外裝型氣罩捕集效果之探討〉,勞委會勞工安全衛生研究所,台北,1999。
    [9] 勞委會勞工安全衛生研究所,〈外裝型氣罩控制風速與捕集能力探討IOSH91-H104〉,勞委會勞工安全衛生研究所,台北,2000。
    [10] 勞委會勞工安全衛生研究所,〈氣罩凸緣對捕集效果相關性探討IOSH91-H102〉,勞委會勞工安全衛生研究所,台北,2001。
    [11] 勞委會勞工安全衛生研究所,〈發散式危害源氣罩設計模式研究IOSH91-H121〉,勞委會勞工安全衛生研究所,台北,2002。
    [12] 勞委會勞工安全衛生研究所,〈吹吸式氣罩設計與操作指引研究IOSH92-H102〉,勞委會勞工安全衛生研究所,台北,2003。
    [13] 行政院勞工委員會,〈有機溶劑中毒預防規則〉,行政院勞工委員會,台北,2003。
    [14] 行政院勞工委員會,〈特定化學物質危害預防標準〉,行政院勞工委員會,台北,2001。
    [15] 行政院勞工委員會,〈鉛中毒預防規則〉,行政院勞工委員會,台北,2002。
    [16] 行政院勞工委員會,〈粉塵危害預防標準〉,行政院勞工委員會,台北,2003。
    [17] Yusurf Priyambodo,〈傳統商用排油煙櫃的流場與洩漏特性〉,
    國立台灣科技大學機械工程研究所碩士論文,台北,2013。
    [18] Gao, Y. T., Blot, W. J., and Zheng, W., “Lung cancer and smoking in Shanghai,” Int. J. Epidemiol, Vol. 17, No. 2, 1988, pp. 277-280.
    [19] American Conference of Governmental Industrial Hygienists, Industrial Ventilation - A Manual of Recommended Practice, 24th ed., American Conference of Governmental Industrial Hygienists, 1330 Kemper Meadow Drive, Cincinnati,Ohio 45240,USA, 2001, pp. 108-109.

    [20] American Conference of Governmental Industrial Hygienists, Industrial Ventilation - A Manual of Recommended Practice, 21th ed., American Conference of Governmental Industrial Hygienists, 1330 Kemper Meadow Drive, Cincinnati,Ohio 45240, 1992.
    [21] Li, Y., Delsante, D., and Symons, J., “Residential kitchen range hoods - buoyancy - capture principle and capture efficiency revisited,” Indoor Air, Vol. 7, No. 3, 1997, pp. 151-157.
    [22] Lim, K. and Lee, C., “A numerical study on the characteristics of flow field, temperature and concentration distribution according to changing the shape of separation plate of kitchen hood system,” Energy and Buildings, Vol. 40, No. 2, 2008, pp. 175-184.
    [23] Huang, R. F., Chen, J. L., Chen, Y. K., Chen, C. C., Yeh, W. Y., and Chen, C. W., “The capture envelope of a flanged circular hood in cross drafts,” AIHA Journal, Vol. 62, No. 2, 2001, pp. 199-207.
    [24] Huang, R. F., Sir, S. Y., Chen, Y. K., Yeh, W. Y., Chen, C. W., and Chen, C. C., “Capture envelopes of rectangular hoods in cross drafts,” AIHA Journal, Vol. 62, No. 10, 2001, pp. 563-572.
    [25] Huang, R. F., Liu, G. S., Chen, Y. K., Yeh, W. Y., Chen, C. W., and Chen, C. C., “Effects of flange size on dividing streamline of exterior hoods in cross drafts,” Journal of Occupational and Environmental Hygiene, Vol. 1, No. 5, 2004, pp. 283-288.
    [26] Huang, R. F., Liu, G. S., Lin, S. Y., Chen, Y. K., Wang, S. C., Peng, C. Y., Yeh, W. Y., Chen, C. W., and Chang, C. P., “Development and Characterization of a Wake-Controlled Exterior Hood,” Journal of Occupational and Environmental Hygiene, Vol. 1, No. 12, 2004, pp. 769-778.
    [27] U. S. Environmental Protection Agency, Guidelines for Determining Capture Efficiency, U. S. Environmental Protection Agency, Research Triangle Park, NC, America, 1995.
    [28] Huebener, D. J. and Hughes, R. T., “Development of push-pull ventilation,” AIHA J., Vol. 46, No. 5, 1985, pp. 262-267.
    [29] Klein, M. K., “A demonstration of NIOSH push-pull ventilation criteria,” AIHA J., Vol. 48, No. 3, 1988, pp. 238-246.
    [30] Siebert, G. W. and Fraser, D. A., “Exhaust ventilation for hot processes,” American Industrial Hygienists Association Journal, Vol. 34, No. 11, 1973, pp. 481-486.
    [31] American Society of Heating, Refrigerating and Air Conditioning Engineers, ASHRAE Handbook - HVAC Application, American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta, GA, America, 2011, pp. 33.1-33.33.
    [32] Flagan, R. C. and Seinfeld, J. H., “Fundamentals of Air Pollution Engineering,” Prentice Hall, Englewood Cliffs, New Jersey, America, 1988, pp. 290-357.

    無法下載圖示 全文公開日期 2021/06/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE