簡易檢索 / 詳目顯示

研究生: 邱彥榕
Yang-lung Chiu
論文名稱: 正弦函數多項式近似演算法之最佳化
Optimization of Polynomial Approximation Algorithms for Sinusoidal Functions
指導教授: 柳宗禹
Tzong-yeu Leou
口試委員: 邱炳樟
Bin-chang Chieu
林敬舜
Ching-shun Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 113
中文關鍵詞: 正弦函數限制峰值最小平方法多項式近似
外文關鍵詞: Sinusoidal function, Peak constrain least squares, Polynomial approximation function
相關次數: 點閱:168下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是對以多項式近似正弦函數之演算法做最佳化之調整,在一定準確度的要求下,可針對任ㄧ特定數值處理器選擇最合適的多項式項數與相關係數值。多項式係數的最佳化採用限制峰值最小平方法進行,其中最大峰值誤差和平方誤差之比重可根據需求予以適當選擇。當多項式係數之準確度受限時,各係數值可依其重要性依序使用限制峰值最小平方法予以求解,可大幅降低函數近似誤差。當考慮多項式近似演算法之計算誤差及使用霍納演算法之情況下,各係數值仍可經由一局部搜尋之步驟求得較佳的函數近似結果。
    在本論文中利用MATLAB軟體以模擬方式成功驗證本論文所提出之方法於16位元定點處理器、32位元定點處理器、單精確度浮點處理器與雙精確度浮點處理器並探討相關特性。此一多項式近似之最佳化技術可延伸使用於各類型數值處理器及其他適用多項式近似之函數上。


    In this thesis, we have explored the optimization of polynomial approximation algorithm for sinusoidal function such that a polynomial function of suitable degree and the corresponding coefficients can be determined for a specific numerical processor to satisfied a predetermined error tolerance. The peak-constrained least-square (PCLS) algorithm is employed to compute the polynomial coefficients iteratively, where the relative weighting factor between the peak error and least-square error in the sinusoidal function approximation can be judiciously chosen. When the finite-precision effects of the polynomial coefficients are considered, the PCLS algorithm can be applied iteratively to find an appropriate set of polynomial coefficients in accordance to the order of significance of each coefficient. If the polynomial approximation is calculated with the Horner algorithm and the computation errors are to be considered, the polynomial coefficients can be further refined through the use of a local minimum search algorithm developed for the integer programming problem.
    The techniques proposed in this thesis have been verified with Matlab software simulation for 16-bit and 32-bit fixed-point processors, single-precision floating-point processor, double-precision floating- point processor, and the pertinent convergence properties and error character- istics of these techniques have been investigated. It is clearly seen that these polynomial approximation techniques can be applicable to various numerical processor and to a number of common functions suitable for polynomial approximation.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖表目錄 VII 第一章 序論 1 1.1 研究動機 1 1.2 研究方法 4 1.3 內容大綱 5 第二章 函數近似 – 使用多項式函數 7 2.1 簡介 7 2.2 泰勒級數 7 2.2.1 泰勒級數理論說明 7 2.2.2 泰勒級數之收斂與誤差估算 9 2.3 最小平方法 10 2.3.1 最小平方法簡介 10 2.3.2 最小平方法理論說明 11 2.4 REMEZ交替(EXCHANGE)演算法計算MINIMAX解 14 2.5 誤差分析 18 第三章 限制峰值的最小平方法 26 3.1 簡介 26 3.2 ADAMS演算法 27 3.3 範例說明 37 第四章 係數誤差與計算誤差 48 4.1 簡介 48 4.2 考慮係數誤差之限制峰值的最小平方法 49 4.3 局部搜尋演算法( THE LOCAL SEARCH ALGORITHM ) 56 4.4 範例說明 59 第五章 模擬軟體介紹與模擬結果 71 5.1 模擬軟體介紹 71 5.2 單精確度浮點數之模擬結果 74 5.3 雙精確度浮點數之模擬結果 81 5.4 32位元定點之模擬結果 87 5.5 16位元定點之模擬結果 93 第六章 結論 100 參考文獻 102

    [1] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, N. J.: Prentice-Hall, 1989.
    [2] V. Manassewitsch, Frequency Synthesizer:Theory and Design, 2nd, ed. John Wiley & Sons, 2005.
    [3] J. E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE Transactions Electronic Computer, vol. EC-8, no. 3, pp. 330-334, Sept. 1959.
    [4] L. Ron, P. H. Robert, and H. E. Bruce, Calculus with Analytic Geo- metry, 8rd ,ed. Houghton Mifflin Company, Inc. 1991.
    [5] J. S. Robert and L. H. Sandra, Applied Mumerical Methods for Engineers using MATLAB and C, John Wiley & Sons, 2005.
    [6] C. T. Fike, Computer Evaluation of Mathematical Functions, En- glewood Cliffs, N.J.: Prentice-Hall, 1968.
    [7] E. Ya. Remez, “General Computational Methods of Chebyshev Approximation,” U.S. Atomic Energy Commission, Division of Technical Information, 1962.
    [8] L. Veidinger, “On the numerical determination of the best approxi- mation in the Chebyshev sense,” Numerische Mathematik, vol. 2, pp. 99-105, Nov. 1960.
    [9] G. Meinaedus, Approximation of Functions : Theory and Nu- merical Methods, Springer-Verlag, New York, 1967.
    [10] J. W. Adams, “FIR Digital Filters with Least-Squares Stopband Subject to Peak-Gain Constraints,” IEEE Transactions on Circuits and Systems, vol. 39, no. 4, pp. 376-388, April 1991.
    [11] J. W. Adams, “Constrained Least-Squares Digital Filter,” in Proc. IEEE International Symposium on Circuits and Systems, ISCAS '92, vol. 2, pp. 565-568, 1992.
    [12] J. W. Adams and J. L. Sullivan, “Peak-Constrained Least-Squares Optimization,” IEEE Transactions on Signal Processing, vol. 46, no. 2, pp. 306-321, Feb. 1998.
    [13] K. P. C. Edwin and H. Z. Stanislaw, An Introduction to optimization, 3rd ,ed. John Wiley & Sons, 2008
    [14] J. Haase and E. Luder, “ Discrete optimization by combining local search and design centering techniques,” IEEE International Sym- posium on Circuits and System, vol. 3, pp. 2735-2738, 1998
    [15] Symbolic Math ToolboxTM 5 User’s Guide, The MathWorks, 2008.
    [16] Fixed-Point ToolboxTM 2 User’s Guide, The MathWorks, 2008.
    [17] IEEE Standard for Floating-Point Arithmetic, IEEE Computer Society, 2008.
    [18] TMS320C672x DSP Real-Time Interrupt Reference Guide, Texas Instruments, Literature Number: SPRU717, April 2005.
    [19] TMS320C6727B, Floating-Point Digital Signal Processors, Texas Instruments, Literature Number: SPRS370E, September 2006, Revised July 2008.
    [20] TMS320C67x FastRTS Library Programmer’s Reference, Texas Instruments, Literature Number: SPRU100A, October 2002.

    QR CODE