簡易檢索 / 詳目顯示

研究生: 徐明鋒
Ming-feng Hsu
論文名稱: 利用半導體光放大器實現多播波長轉換器
Multicast wavelength converters using semiconductor optical amplifiers
指導教授: 李三良
San-Liang Lee
口試委員: 毛明華
Ming-Hua Mao
曹恆偉
Hen-Wai Tsao
何文章
Wen-Jeng Ho
張嘉男
Chia-Nan Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 95
中文關鍵詞: 半導體光放大器波長轉換
外文關鍵詞: Semiconductor optical amplifier, Wavelength convert
相關次數: 點閱:243下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 「多播」為一點對多點的網路傳送方式,其能針對訊號進行複製,並且將複製後的訊號傳送到不同目的地。如此的網路傳輸方式可有效的提升網路效能,並使網路功能更具彈性。本論文配合波長轉換技術的使用,成功地將複製後的訊號載送在不同的波長上,再配合多工器的使用,我們就能將訊號傳送給不同的終端,順利地完成網路中的多播功能。
    本論文探討半導體光放大器中的交叉極化調變及雙泵激光源四波混合兩種機制,並且利用這兩種物理機制製作波長轉換器,找出波長轉換器的最佳工作條件,最後利用波長轉換器的實驗結果發展出多播波長轉換器。在多播波長轉換器方面,我們在10Gb/s的調變速率下,利用交叉極化調變機制完成一對八的波長轉換,實驗中得到清楚的眼形圖,並且在誤碼率為10-10的基準下,得到小於2.2dB的功率償付值。另一方面,我們利用雙泵激光源四波混合的機制完成一對三的波長轉換器,也能得到不錯的眼形圖,並且在誤碼率為 10-10的基準下,可得到小於2.7dB的功率償付值。


    The multicasting is a point-to-multipoint networking scheme that can simultaneously transmit signals form one user to many users. It can improve the performance and flexibility of a network. In this thesis, we apply the all-optical wavelength conversion technologies to realize all-optical multicast wavelength converters. Our schemes are based on the mechanisms of cross-polarization modulation (XPoM) or dual-pumped four-wave-mixing (DPFWM) in a semiconductor optical amplifier (SOA). The multicasting is carried out by converting the signal to multiple wave-lengths and using a demultiplexer to deliver the signal to different output ports.
    We first investigate the optimal operation conditions for a SOA-based wavelength converter based on the XPoM and DPFWM, respec-tively. We then perform the multicast wavelength conversion by using the obtained operation conditions. We demonstrate 1-to-8 wavelength con-version and 1-to-3 wavelength conversion of 10Gb/s by using the XPoM and the DPFWM effects, respectively. Clear eye opening and low power penalty are obtained in the experiments. The power penalty at 10-10 bit er-ror rate is measured to be below 2.2dB and 2.7dB for XPoM- and DPFWM-based multicast WC, respectively. The results indicate that the multicast WC can have better performance when the XPoM mechanism in a SOA is used.

    中文摘要..............................................I Abstract..............................................II 誌謝..................................................III 目次..................................................IV 圖表目錄..............................................VI 第一章 簡介...........................................1 1.1 前言..............................................1 1.2 波長轉換技術簡介..................................3 1.2.1 交叉增益調變(Cross-gain modulation, XGM)........4 1.2.2 交叉相位調變(Cross-phase modulation, XPM).......5 1.2.3 四波混合(Four-wave mixing, FWM).................6 1.3 研究目的與動機 ....................................7 1.4 論文架構..........................................8 第二章 半導體光放大器.................................9 2.1 簡介..............................................9 2.2 SOA的基本特性.....................................10 2.2.1 靜態特性........................................10 2.2.2 動態特性........................................17 2.3 結論..............................................21 第三章 波長轉換器.....................................23 3.1 交叉極化調變......................................23 3.1.1 原理簡介........................................23 3.1.2 實驗架構........................................26 3.1.3 靜態量測........................................27 3.1.4 總結............................................39 3.1.5 動態量測........................................40 3.1.6 總結............................................43 3.2 DPFWM波長轉換器...................................43 3.2.1 四波混合工作原理................................44 3.2.2 靜態量測........................................46 3.2.3 動態量測........................................51 3.2.4 總結............................................52 第四章 多播波長轉換技術...............................54 4.1 簡介..............................................54 4.2 XPOM多播波長轉換器................................57 4.2.1 實驗架構........................................57 4.2.2 實驗結果........................................58 4.2.3 總結............................................67 4.3 DPFWM多播波長轉換器...............................68 4.3.1 實驗架構........................................68 4.3.2 實驗結果........................................69 4.3.3 總結............................................74 4.4 結論..............................................74 第五章 結論...........................................76 5.1 成果與討論........................................76 5.2 未來研究方向......................................77 作者簡介..............................................78 參考文獻..............................................79

    [1] M. Garnot, M. Sotom, and F. Masetti, “Routing Strategies for Opti-cal Paths in WDM Networks,” IEEE International Conference, Vol. 1, pp. 422-426, 8-12 June 1997.
    [2] C. A. Brackett, “Dense Wavelength Division Multiplexing Networks: Principles and Applications,” IEEE Journal on Selected Areas in Communications, Vol. 8, No. 6, pp. 948-963, August 1990.
    [3] J. P. R. Lacey, G. J. Pendock, and R. S. Tucker, “All-Optical 1300-nm to 1550-nm Wavelength Conversion Using Cross-Phase Modula-tion in a Semiconductor Optical Amplifier,” IEEE Photonics Technology Letters, Vol. 8, No. 7, pp. 885-887, July 1996.
    [4] D. Mahgerefteh and M. W. Chbat, “All-Optical 1.5 to 1.3 Wavelength Conversion in a Walk-Off Compensating Nonlinear Op-tical Loop Mirror,” IEEE Photonics Technology Letters, Vol. 7, No. 5, pp. 497-499, May 1995.
    [5] R. Ramaswami and K. N. Sivarajan, “Routing and Wavelength As-signment in All-Optical Networks,” IEEE/ACM Transactions on Networking, Vol. 3, No. 5, pp. 489-500, October 1995.
    [6] E. Iannone and R. Sabella, “Opticall Path Technologies: A Compari-son Among Different Cross-Connect Architectures,” Journal of Lightwave Technology, Vol. 14, No. 10, pp. 2184-2195, October 1996.
    [7] S. L. Danielsen, P. B. Hansen, and K. E. Stubkjaer, “Wavelength Conversion in Optical Packet Switching,” Journa of Lightwave Technology, Vol. 16, No. 12, pp. 2095-2108, December 1998.
    [8] 王志仁,“以雙段式位移層雷射作波長轉換器,”碩士論文,台灣科技大學,民國九十三年。
    [9] 龔佩敏,”以輔助光提升波長轉換器效能之研究,”碩士論文,台灣科技大學,民國九十一年。
    [10] A. E. Kelly, “Ultra high-speed wavelength conversion and regenera-tion using semiconductor optical amplifiers,” Optical Fiber Communication (OFC’ 01), Vol. 1, pp. MB1-1 - MB1-3, March 2001, Anaheim, USA.
    [11] T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-Optical Wavelength Conversion by Semiconductor Optical Amplifiers,” Journal of Lightwave Technology, Vol. 14, No. 6, pp. 942-954, June 1996.
    [12] A. Tzanakaki and M. J. O’Mahony, “Analysis of tunable wavelength converters based on cross-gain modulation in semiconductor optical amplifiers operating in the counter propagating mode,” IEE Proc.-Optoelectron., Vol. 147, No. 1, pp. 49-55, February 2000.
    [13] S. Chelles, F. Devaux, D. Meichenin, D. Sigogne, A. Ougazzaden, and A. Carenco, “Polarization Insensitive Wavelength Conversion by Cross Gain Modulation in a Strained MQW Optical Amplifier,” European Conference on Optical Communications (ECOC’96), pp.53-56, 1996, Oslo.
    [14] S. Chelles, F. Devaux, D. Meichenin, D. Sigogne, and A. Carenco, “Extinction Ratio of Cross-Gain Modulated Multistage Wavelength Converters: Model and Experiments,” IEEE Photonics Technology Letters, Vol. 9, No. 6, pp. 758-760, June 1997.
    [15] K. Obermann, S. Kindt, D. Breuser, and K. Petermann, “Perform-ance Analysis of Wavelength Converters Based on Cross-Gain Modulation in semiconductor-Optical Amplifiers,” Journal of Light-wave Technology, Vol. 16, No. 1, pp. 78-85, January 1998.
    [16] S. Shimada and H. Ishio, “Optical Amplifiers and their Applica-tions,” New York: Wiley, 1994.
    [17] C. Y. Tsai, C. Y. Tsai, C. H. Chen, T. L. Sung, T. Y. Wu, and F. P. Shih, “Theoretical Model for Intravalley and Intervalley Free-Carrier Absorption in Semiconductor Lasers: Beyond the Classical Drude Model,” IEEE Journal of Quantum Electronics, Vol. 34, No. 3, pp. 552-559, March 1998.
    [18] J. L. Pankove, “Optical Processes in Semiconductors,” New York: Dover, 1971.
    [19] E. Garmire, A. Kost, K. L. Hall, E. R. Thoen, and E. P. Ippen, “Nonlinear Optics in Semiconductor,” Chapter 2, pp.112-115, Aca-demic Press, 1999.
    [20] M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. V. Stry-land, “Dispersion of Bound Electron Nonlinear Refraction in Sol-ids,” IEEE Journal of Quantum Electronics, Vol. 27, No. 6, pp. 1296-1309, June 1991.
    [21] Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength Conversion Using Nonlin-ear Polarization Rotation in a Single Semiconductor Optical Ampli-fier,” IEEE Photonics Technology Letters, Vol. 15, No. 1, pp. 90-92, January 2003.
    [22] C. S. Wong and H. K. Tsang, “Polarization-Independent Wavelength Conversion at 10Gb/s Using Birfringence Swithcing in a Semicon-ductor Optical Amplifier,” IEEE Photonics Technology Letters, Vol. 15, No. 1, pp. 87-89, January 2003.
    [23] H. Soto, D. Erasme, and G. Guekos, “Cross-Polarization Modulation in Semiconductor Optical Amplifiers,” IEEE Photonics Technology Letters, Vol. 11, No. 8, pp. 970-972, August 1999.
    [24] X. Yang, D. Lenstra, A. K. Mishra, H. D. Waardt, G. D. Khoe, and H. J. S. Dorren, “Propagation of Ultrashort Optical Pulses in a Semi-conductor Optical Amplifier: Simulation and Experiments,” 5th International Conference on Transparent Optical Networks (ICTON’03) , We.B.5, pp.47-53, June 2003, Warsaw, Poland.
    [25] M. A. Summerfield, “Telecommunications Applications of Four-Wave Mixing in Semiconductor Optical Amplifiers,” Ph.D. thesis, University of Melbourne Parkville, Victoria 3052 Australia, October 1995.
    [26] Z. Pan, H. Yang, Z. Zhu, S. J. B. Yoo, “Experimental demonstration of a multicast-capable optical label switching router”, Optical Fiber Communication (OFC’ 05), Anaheim, OTuC8, March 2005.
    [27] L. Xu, N. Chi, K. Yvind, L. J. Christiansen, L. K. Oxenlowe, J. Mork, P. Jeppesen, and J. Hanberg, “8 40Gb/s RZ all-optical broadcasting utilizing an electroabsorption modulator,” Optical Fiber Communication (OFC’ 04), Vol. 1, pp.23-27, February 2004.
    [28] K. K. Chow and C. Shu, “All-optical wavelength conversion with multicasting at 6 10 Gbit/s using electroabsorption modulator,” Electronics Letters, Vol. 39 , Issue. 19, pp.1395 – 1397, 18 Septem-ber 2003.
    [29] J. Yu, X. Zheng, F. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “8 X 40Gb/s 55-km WDM Transmission over Con-ventional Fiber Using a New RZ Optical Source,” IEEE Photonics Technology Letters, Vol. 12, No. 7, pp. 912-914, July 2000.
    [30] J. Yu, X. Zheng, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “All-Optical Wavelength Conversion of Short Pulses and NRZ Signals Based on a Nonlinear Optical Loop Mirror,” Journal of Lightwave Technology, Vol. 18, No. 7, pp. 1007-1017, July 2000.
    [31] T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly pen-alty-free, <4ps supercontinuum Gbit/s pulse generation over 1535-1560nm,” Electronics Letters, Vol. 30, No. 10, pp. 790-791, May 1994.
    [32] Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-Channel 10-GHz Spectrally Sliced Pulse Source Based on Supercontinuum Generation in Normally Dispersive Highly Nonlinear Holey Fiber,” IEEE Photonics Technology Letters, Vol. 15, No. 12, pp. 1689-1691, December 2003.
    [33] J. L. Pleumeekers, J. Leuthold, M. Kauer, P. G. Bernasconi, and C. A. Burrus, “All-Optical Wavelength Conversion and Broadcasting to Eight Separate Channels by a Single Semiconductor Optical Ampli-fier Delay Interferometer,” Optical Fiber Communication (OFC’02), Paper ThDD4, pp.596-597, March 2002, Anaheim, CA, USA.
    [34] G. Contestabile, M. Presi, and E. Ciaramella, “Multiple Wavelength Conversion for WDM Multicasting by FWM in an SOA,” IEEE Photonics Technology Letters, Vol. 16, No. 7, pp. 1775-1777, July 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE