簡易檢索 / 詳目顯示

研究生: 許名毅
Ming-Yi Xu
論文名稱: 利用立體光刻列印技術於單層紙張中製造三維微流道
Creating Three-Dimensional Microfluidic Channels Inside A Single-Layer Paper with Stereolithography Printing
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: ​陳珮珊
Pai-Shan Chen
劉沂欣
Yi-Hsin Liu
林鼎晸
Ding-Zheng Lin
葉怡均
Yi-Chun Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 129
中文關鍵詞: 紙基晶片微流體立體光刻印刷三維結構
外文關鍵詞: paper-based device, microfluidic device, 3D structure, Digital Light Processing
相關次數: 點閱:243下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用立體光刻印刷技術在單層紙張中製造三維微流道,改造市售光固化3D列印機台用於濾紙列印上,並與堆疊式三維紙基微流體晶片進行成效比較,在單層晶片吸收0.5ul溶液時,相較堆疊式晶片有效提升溶液傳遞效率,於各濃度的螢光溶液傳遞中平均有136%的亮度提升。並在單層紙中達到五層分層列印,本晶片開發成功後,能夠應用在更複雜的多流道多層數晶片上。
本晶片利用易取得且成本低廉的纖維素濾紙,使用立體光刻列印技術將樹脂固化在濾紙中,進而分隔製作出具有親水與疏水區域的紙基晶片,並且藉由翻面列印與光罩設計將三維結構微流體通道在單層紙中呈現。
本論文透過四個實驗對製程優化與三個實驗進行晶片製作來測試性能:(1)製作吸光率99.2%之吸光片改造成形平台,避免曝光反射問題,使樹脂固化在0.4秒前呈線性成長;(2)比較染色前後樹脂曝光時間與固化厚度之關係,黑色樹脂在0.01秒的曝光時間控制下可以有4.74 um的高度控制性;(3)利用超聲波清洗未固化樹脂,花費20秒即可將樹脂清除完全;(4)利用後固化製程穩定曝光固化的樹脂性質,透明樹脂約需6分鐘,而黑色樹脂超過30分鐘仍會造成影響,因此判定不適用於單層三維晶片上;(5)製作流道解析度測試光罩,列印薄濾紙流道最小可到60um,厚濾紙則上下底會出現50%左右的失真;(6)比較堆疊式三維晶片與單層三維晶片之溶液傳遞成效,單層吸收0.5ul溶液時,亮度平均提升136%,且標準差較小,因此可判定傳遞較穩定;(7)使用分條式列印,能更好的在單層濾紙建立五層的固化結構。


In this study, Our objective was to establish a systematic method for the creation of three-dimensional microfluidic structures from a single layer of filter paper. Most conventional methods based on the principles of origami or layer-by-layer manufacturing are vulnerable to solvent loss between paper-based flow channels during the flow phase. We sought to overcome this issue through the use of DLP (Digital Light Processing) light curing technology in conjunction with a unique mask design. Briefly, we create a three-dimensional micro flow channel on a single layer of filter paper. When a single-layer wafer absorbs 0.5ul of solution, compared to stacked wafers, the solution transfer efficiency is effectively improved, and there is an average 136% increase in brightness in the transfer of fluorescent solutions of various concentrations. Five-layer printing is achieved in a single-layer paper. It means that this fabrication can be applied to more complex multi-channel and multi-layer chips.
This chip is made by filter paper which is easy to obtain and low-cost. We use stereolithography printing technology to cure resin in the filter paper to separates the hydrophilic and hydrophobic areas. With mask design and flip over printing skill, the three-dimensional structure of the microfluidic channel can be achieved in a single layer of paper.
The conclusions of experiment results are: (1) We add a light-absorbing film on the forming platform to decrease the reflection from the metal surface of the platform; (2) The black resin have the better curing thickness resolution 4.74 um/0.01sec; (3) Using ultrasonic cleaner to clean the uncured resin needs 20 seconds; (4) Using post-curing can stabilize the cured resin not to influence the next exposure. The black resin is not suitable for post-curing because it takes too much time for that; (5) Flow channel size distortion is small on thin filter paper; (5) Single-layer chips have better transfer efficiency and higher uniformity when the amount of solution absorption per unit volume is low; (6) Using batch multi-layer printing, a single-layer filter paper can be built into a five-layer structure.

摘要 iv Abstract ii 致謝 iii 目錄 iv 圖目錄 ix 表目錄 xv 第一章 緒論 1 1.1 研究背景 1 1.1.1 微流體晶片 2 1.1.2 紙基微流體晶片 4 1.1.3 三維紙基微流體晶片 5 1.2 研究動機與目的 7 1.3 研究方法 8 1.4 論文架構 10 第二章 文獻回顧 13 2.1 紙基微流體晶片製作相關文獻 13 2.1.1 蠟列印式 14 2.1.2 繪圖式 15 2.1.3 噴墨蝕刻式 17 2.1.4 雷射式 17 2.1.5 沖壓式 18 2.1.6 剪切式 19 2.1.7 噴漆式 20 2.1.8 微影式 21 2.1.9 電漿處理式 22 2.1.10 化學氣相沉積式 23 2.1.11 濕蝕刻式 24 2.1.12 立體光刻列印式 25 2.2 三維紙基晶片相關文獻 27 2.2.1 堆疊式三維紙基晶片 27 2.2.2 折疊式三維紙基晶片 29 2.2.3 單層三維結構式紙基晶片 30 第三章 微流體晶片製備 32 3.1 光固化列印簡介 32 3.2 紙基微流體晶片製作 36 3.2.1 光固化樹脂選用 39 3.2.2 曝光製程改良 40 3.2.3 曝光參數設計 41 3.2.4 顯影製程改良 42 3.2.5 後固化製程改良 42 3.2.6 數位光罩設計 43 第四章 研究設備介紹 45 4.1 製程設備與軟體 45 4.2 量測設備與軟體 48 第五章 實驗方法 51 5.1吸光片對曝光反射影響測試 51 5.1.1 實驗設計概念 52 5.1.2 實驗操作方式 54 5.2 曝光時間與固化厚度之關係 56 5.2.1 實驗設計概念 57 5.2.2 實驗操作方式 57 5.3 未固化樹脂使用超聲波清洗對二次曝光之影響 58 5.3.1 實驗設計概念 58 5.3.2 實驗操作方式 59 5.4 後固化對二次曝光之影響 60 5.4.1 實驗設計概念 61 5.4.2 實驗操作方式 62 5.5 平面列印的流道解析度測試 63 5.5.1 實驗設計概念 63 5.5.2實驗操作方式 64 5.6 比較堆疊式紙基晶片與單層三維紙基晶片之溶液傳遞效率 65 5.6.1 實驗設計概念 66 5.6.2 實驗操作方式 67 5.7 單層濾紙多層結構列印 69 5.7.1實驗設計概念 69 5.7.2實驗操作方式 71 第六章 實驗結果與討論 73 6.1 吸光片對曝光反射影響測試 73 6.1.1 未使用吸光片 73 6.1.2 使用吸光片 74 6.2 曝光時間與固化厚度之關係 75 6.2.1 透明樹脂 76 6.2.2 黑色樹脂 77 6.3 未固化樹脂使用超聲波清洗對二次固化的影響 78 6.4 後固化對二次曝光之影響 79 6.4.1 透明樹脂 79 6.4.2 黑色樹脂 80 6.5平面列印之流道解析度測試 81 6.6 比較堆疊式紙基晶片與單層三維紙基晶片之溶液傳遞效率 85 6.7單層濾紙多層結構列印 87 第七章 結論與未來展望 89 7.1 結論 89 7.2 未來展望 91 參考文獻 93 附錄 97 自動化毒品檢測機台 97 需求設定 98 硬體設計說明 99 軟體設計說明 104 程式碼 106

[1] Xia, Younan, and George M. Whitesides. "Soft lithography." Annual review of materials science 28.1 (1998): 153-184.
[2] Five short stories on the history if microfluidics. Retrieved from https://www.elveflow.com/microfluidic-tutorials/microfluidic-reviews-and-tutorials/history-of-microfluidics/
[3] Wu, Jiandong, et al. "Lab-on-chip technology for chronic disease diagnosis." NPJ digital medicine 1.1 (2018): 1-11.
[4] Martinez, Andres W., et al. "Patterned paper as a platform for inexpensive, low‐volume, portable bioassays." Angewandte Chemie 119.8 (2007): 1340-1342.
[5] Martinez, Andres W., Scott T. Phillips, and George M. Whitesides. "Three-dimensional microfluidic devices fabricated in layered paper and tape." Proceedings of the National Academy of Sciences 105.50 (2008): 19606-19611.
[6] Ge, Lei, et al. "3D origami-based multifunction-integrated immunodevice: Low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device." Lab on a Chip 12.17 (2012): 3150-3158.
[7] Fernando, S. Amarasiri, and George S. Wilson. "Studies of the ‘hook’effect in the one-step sandwich immunoassay." Journal of immunological methods 151.1-2 (1992): 47-66.
[8] He, Yong, et al. "Fabrication of paper-based microfluidic analysis devices: a review." Rsc Advances 5.95 (2015): 78109-78127.
[9] 中央流行疫情指揮中心 檢自https://www.healthnews.com.tw/news/article/47229/
[10] Lu, Yao, et al. "Rapid prototyping of paper‐based microfluidics with wax for low‐cost, portable bioassay." Electrophoresis 30.9 (2009): 1497-1500.
[11] Carrilho, Emanuel, Andres W. Martinez, and George M. Whitesides. "Understanding wax printing: a simple micropatterning process for paper-based microfluidics." Analytical chemistry 81.16 (2009): 7091-7095.
[12] Bruzewicz, Derek A., Meital Reches, and George M. Whitesides. "Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper." Analytical chemistry 80.9 (2008): 3387-3392.
[13] Nie, Jinfang, et al. "Low-cost fabrication of paper-based microfluidic devices by one-step plotting." Analytical chemistry 84.15 (2012): 6331-6335.
[14] Abe, Koji, Koji Suzuki, and Daniel Citterio. "Inkjet-printed microfluidic multianalyte chemical sensing paper." Analytical chemistry 80.18 (2008): 6928-6934.
[15] Chitnis, Girish, et al. "Laser-treated hydrophobic paper: an inexpensive microfluidic platform." Lab on a Chip 11.6 (2011): 1161-1165.
[16] de Tarso Garcia, Paulo, et al. "A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays." Rsc Advances 4.71 (2014): 37637-37644.
[17] Fenton, Erin M., et al. "Multiplex lateral-flow test strips fabricated by two-dimensional shaping." ACS applied materials & interfaces 1.1 (2009): 124-129.
[18] Nurak, Thara, Narong Praphairaksit, and Orawon Chailapakul. "Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water." Talanta 114 (2013): 291-296.
[19] Carrilho, Emanuel, et al. "Paper microzone plates." Analytical chemistry 81.15 (2009): 5990-5998.
[20] Li, Xu, et al. "based microfluidic devices by plasma treatment." Analytical chemistry 80.23 (2008): 9131-9134.
[21] Demirel, Gokhan, and Esra Babur. "Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications." Analyst 139.10 (2014): 2326-2331.
[22] Cai, Longfei, et al. "A simple paper-based sensor fabricated by selective wet etching of silanized filter paper using a paper mask." Biomicrofluidics 8.5 (2014): 056504.
[23] He, Yong, Wen-bin Wu, and Jian-zhong Fu. "Rapid fabrication of paper-based microfluidic analytical devices with desktop stereolithography 3D printer." Rsc Advances 5.4 (2015): 2694-2701.
[24] Fu, Xian, et al. "Flow controllable three-dimensional paper-based microfluidic analytical devices fabricated by 3D printing technology." Analytica chimica acta 1065 (2019): 64-70.
[25] Qi, Ji, et al. "Three-dimensional paper-based microfluidic chip device for multiplexed fluorescence detection of Cu2+ and Hg2+ ions based on ion imprinting technology." Sensors and Actuators B: Chemical 251 (2017): 224-233.
[26] Park, Chanyong, et al. "Double-sided 3D printing on paper towards mass production of three-dimensional paper-based microfluidic analytical devices (3D-μPADs)." Lab on a Chip 18.11 (2018): 1533-1538.
[27] Kowsari, Kavin, et al. "Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing." Additive Manufacturing 24 (2018): 627-638.
[28] Jiao, Yucui, et al. "3D vertical-flow paper-based device for simultaneous detection of multiple cancer biomarkers by fluorescent immunoassay." Sensors and Actuators B: Chemical 306 (2020): 127239.
[29] Yu, Wei W., and Ian M. White. "Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper." Analytical chemistry 82.23 (2010): 9626-9630.
[30] Sones, C. L., et al. "Laser-induced photo-polymerisation for creation of paper-based fluidic devices." Lab on a Chip 14.23 (2014): 4567-4574.
[31] 蕭宏 著,半導體製程技術導論,全華圖書,2014
[32] 李有璋 主編,半導體與光電製程及設備,高立圖書,2018
[33] 葉文冠、翁俊仁 著,半導體製程技術與元件,東華書局,2008

[35] Li, Fang, et al. "Three-dimensional microfluidic paper-based device for multiplexed colorimetric detection of six metal ions combined with use of a smartphone." Analytical and bioanalytical chemistry 411.24 (2019): 6497-6508.
[36] Liu, Chan-Chiung, et al. "Microfluidic paper-based chip platform for formaldehyde concentration detection." Chemical Engineering Journal 332 (2018): 695-701.
[37] Park, Chanyong, et al. "Three-dimensional paper-based microfluidic analytical devices integrated with a plasma separation membrane for the detection of biomarkers in whole blood." ACS applied materials & interfaces 11.40 (2019): 36428-36434.
[38] Baek, Seung Ho, et al. "Three-dimensional paper-based microfluidic analysis device for simultaneous detection of multiple biomarkers with a smartphone." Biosensors 10.11 (2020): 187.
[39] Lee, Michael P., et al. "Development of a 3D printer using scanning projection stereolithography." Scientific reports 5.1 (2015): 1-5.
[40] Ho, Chee Meng Benjamin, et al. "3D printed microfluidics for biological applications." Lab on a Chip 15.18 (2015): 3627-3637.
[41] Jiang, Yan, et al. "Fabrication techniques of microfluidic paper-based chips and their applications." Progress in Chemistry 26.01 (2014): 167.
[42] Chen, Pin-Chuan, et al. "An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate." The International Journal of Advanced Manufacturing Technology 71.9 (2014): 1623-1630.
[43] Sia, Samuel K., and George M. Whitesides. "Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies." Electrophoresis 24.21 (2003): 3563-3576.

無法下載圖示 全文公開日期 2026/08/20 (校內網路)
全文公開日期 2026/08/20 (校外網路)
全文公開日期 2026/08/20 (國家圖書館:臺灣博碩士論文系統)
QR CODE