簡易檢索 / 詳目顯示

研究生: 鄭力仁
Li-Ren Zheng
論文名稱: 雙向升降壓直流-直流轉換器研製
Design and Implementation of a Bidirectional Buck-Boost DC-DC Converter
指導教授: 劉益華
Yi-Hua Liu
口試委員: 邱煌仁
Huang-Jen Chiu
王順忠
Shun-Chung Wang
鄧人豪
Jen-Hao Teng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 135
中文關鍵詞: 零電壓切換自適應相移控制雙向升降壓直流-直流轉換器
外文關鍵詞: Bidirectional buck–boost dc–dc converter, Zero voltage switching, Adaptive phase-shift control
相關次數: 點閱:214下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文實際和設計研製一數位控制非隔離雙向直流-直流轉換器,所
提出的轉換器在所有方向均可以操作在降壓模式或是升壓模式,透過新
型調變策略和適當的設計降升壓電感感值以達到主開關零電壓切換操
作,以提高效率。為了進一步提升效率,提出了自適應相移的控制方法,
根據負載的大小決定閘極訊號之間的相移角度。本文使用一個低成本的
數位訊號控制器dsPIC33FJ16GS502 來實現電力潮流控制、調節直流匯
流排電壓和自適應相移控制,此調變策略是基於軟體的解決方式,不需
要額外附加電路,因此易於實現並且降低不穩定性和雜訊敏感度的問題。
為了驗證所提出方法的正確性與有效性,實作了一台300 W 原型電路。
根據實驗測試結果,在不同負載下所有操作模式的測量效率均在90 %
以上。


In this thesis, a digitally-controlled non-isolated bidirectional buck–
boost dc–dc converter is studied and implemented. The proposed converter
is capable of operating in all power conditions in buck/boost modes.
Through a novel modulation strategy and proper design of the buck-boost
inductance, zero voltage switching (ZVS) can be achieved and thus high
efficiency can be obtained. To further improve the efficiency, an adaptive
phase-shift control method which determines the phase shift between gating
signals according to the load level is also proposced. A low cost digital
signal controller dsPIC33FJ16GS502 is adopted in this thesis to realize the
power flow control, DC-bus voltage regulation and adaptive phase shift
control. As the modulation strategy is a software-based solution, there are
no requirement of additional circuits; therefore, it can be easily
implemented and reduces instability and noise susceptibility problems. To
validate the correctness and the effectiveness of the proposed method, a 300
W prototyping circuit is implemented and tested. According to the
experimental results, the measured efficiencies of all operating modes under
different loads are all higher than 90%.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 文獻探討 4 1.4 論文大綱 7 第二章 動作原理與元件設計 8 2.1 系統架構介紹 8 2.2 雙向升降壓直流-直流轉換器等效模型分析 8 2.2.1充電模式等效模型 9 2.2.2放電模式等效模型 13 2.3 雙向升降壓直流-直流轉換器動作分析 18 2.3.1充電模式動作分析 18 2.3.2放電模式動作分析 26 2.4 相移機制 34 2.4.1相移原理與分析 34 2.4.2相移角度與電感值設計 37 2.5 元件設計 39 2.5.1電感設計 39 2.5.2匯流排端及電池端電容之設計 40 2.5.3零電壓切換條件 40 2.5.4相移角度設計 40 第三章 韌體系統介紹與設計 45 3.1 dsPIC33FJ16GS502簡介 46 3.2 程式設計流程介紹 48 3.3 數位濾波器 51 3.3.1濾波器簡介 51 3.3.2無限與有限脈衝響應濾波器 54 3.3.3有限脈衝響應濾波器設計 55 3.3.4數位濾波器驗證 58 3.4 數位PID控制器 59 3.4.1PID控制原理 59 3.4.2數位PID控制器設計 60 第四章 模擬與實驗結果及討論 63 4.1 模擬軟體介紹 63 4.1.1充電模式模擬 63 4.1.2放電模式模擬 65 4.2 實驗數據與波形圖 68 4.2.1降壓型充電模式實測波形圖 68 4.2.2升壓型充電模式實測波形圖 80 4.2.3降壓型放電模式實測波形圖 91 4.2.4升壓型放電模式實測波形圖 102 第五章 結論與未來展望 114 5.1 結論 114 5.2 未來展望 115 參考文獻 116

[1] J. B. Baek, W. I. Choi, and B. H. Cho, “Digital Adaptive Frequency Modulation for Bidirectional DC-DC Converter,” IEEE Transactions on Industrial Electronics, vol. 60, no. 11, pp. 5167-5176, 2013.
[2] A. A. Hussein, N. Kutkut, Z. J. Shen, and I. Batarseh, “Distributed Battery Micro-Storage Systems Design and Operation in a Deregulated Electricity Market,” IEEE Transactions on Sustainable Energy, vol. 3, no. 3, pp. 545-556, 2012.
[3] 經濟部能源局, 「油價趨勢圖」, http://web3.moeaboe.gov.tw/oil102/.
[4] B. Berman and J. Gartner, “Plug-In Electric Vehicles,” 2Q 2012.
[5] O. C. Onar, J. Kobayashi, and A. Khaligh, “A Fully Directional Universal Power Electronic Interface for EV, HEV, and PHEV Applications,” IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5489-5498, 2013.
[6] H. R. Karshenas, H. Daneshpajooh, A. Safaee, P. Jain, and A. Bakhshai, “Bidirectional DC - DC Converters for Energy Storage Systems,” International Conference on Electrical Machines and System, pp. 161-178, 2011.
[7] R. M. Schupbach and J. C. Balda, “Comparing DC-DC Converters for Power Management in Hybrid Electric Vehicles,” IEEE Electric Machines and Drives Conference, vol. 3, pp. 1369-1374, 2003.
[8] Y. Du, X. Zhou, S. Bai, S. Lukic, and A. Huang, “Review of Non-Isolated Bi-Directional DC-DC Converters for Plug-In Hybrid Electric Vehicle Charge Station Application at Municipal Parking Decks,” IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1145-1151, 2010.
[9] M. Pahlevaninezhad, P. Das, J. Drobnik, P. K. Jain, and A. Bakhshai, “A Novel ZVZCS Full-Bridge DC/DC Converter Used for Electric Vehicles,” IEEE Transactions on Power Electronics, vol. 27, no. 6, pp. 2752-2769, 2012.
[10] A. Kumar and P. Gaur, “Bidirectional DC/DC Converter for Hybrid Electric Vehicle,” 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 839-843, 2014.
[11] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. O. Badawy, “Performance Analysis of Bi-Directional DC-DC Converters for Electric Vehicles,” IEEE Transactions on Industry Applications, pp. 1-1, 2015.
[12] H. Bai and C. Mi, “The Impact of Bidirectional DC-DC Converter on the Inverter Operation and Battery Current in Hybrid Electric Vehicles,” International Conference on Power Electronics, pp. 1013-1015, 2011.
[13] C. C. Lin, G. W. Wu, and L. S. Yang, “Study of a Non-isolated Bidirectional DC–DC Converter,” IET Power Electronics, vol. 6, no. 1, pp. 30-37, 2013.
[14] C. C. Lin, L. S. Yang, and G. W. Wu, “Analysis of a Bidirectional DC-DC Converter with Wide Voltage Conversion Range,” International Symposium on Computer, Consumer and Control (IS3C), pp. 749-752, 2012.
[15] H. J. Chiu, Y. K. Lo, S. W. Kuo, S. J. Cheng, and F. T. Lin, “Design and Implementation of a High-Efficiency Bidirectional DC-DC Converter for DC Micro-Grid System Applications,” International Journal of Circuit Theory and Applications, vol. 42, no. 11, pp. 1139-1153, 2014.
[16] S. W. Kuo, Y. K. Lo, H. J. Chiu, S. J. Cheng, C. Y. Lin, and C. S. Yang, “A High-Performance Bidirectional DC-DC Converter for DC Micro-Grid System Application,” International Power Electronics Conference (IPEC), pp. 3185-3189, 2014.
[17] D. Lei, W. Xueping, L. Zhen, and L. Xiaozhong, “A New Soft Switching Bidirectional Buck or Boost DC-DC Converter,” International Conference on Electrical Machines and Systems (ICEMS), pp. 1163 - 1167, 2008.
[18] S. Waffler and J. W. Kolar, “A Novel Low-Loss Modulation Strategy for High-Power Bidirectional Buck + Boost Converters,” IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1589-1599, 2009.
[19] J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, “Design Methodology of Bidirectional CLLC Resonant Converter for High-Frequency Isolation of DC Distribution Systems,” IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1741-1755, 2013.
[20] F. Z. Peng, H. Li, G. J. Su, and J. S. Lawler, “A New ZVS Bidirectional DC-DC Converter for Fuel Cell and Battery Application,” IEEE Transactions on Power Electronics, vol. 19, no. 1, pp. 54-65, 2004.
[21] L. Hui, F. Z. Peng, and J. S. Lawler, “A Natural ZVS Medium-Power Bidirectional DC-DC Converter with Minimum Number of Devices,” IEEE Transactions on Industry Applications, vol. 39, no. 2, pp. 525-535, 2003.
[22] N. M. L. Tan, T. Abe, and H. Akagi, “Experimental Discussions on Operating Frequencies of a Bidirectional Isolated DC-DC Converter for a Battery Energy Storage System,” IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2333-2340, 2013.
[23] F. Sedaghati, S. H. Hosseini, M. Sabahi, and G. B. Gharehpetian, “Analysis and Implementation of a Modular Isolated Zero-Voltage Switching Bidirectional DC–DC Converter,” IET Power Electronics, vol. 7, no. 8, pp. 2035-2049, 2014.
[24] Microchip Technology Inc., “dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04,” Available:http://www.microchip.com.
[25] 黃士銘, “高效率雙向直流-直流轉換器研製,” 國立台灣科技大學電機工程系碩士學位論文, 民國103年1月.
[26] 郭書瑋, “應用於微電網系統之高效能雙向直流/直流轉換器,” 國立台灣科技大學電子工程系博士學位論文, 民國103年5月.

無法下載圖示 全文公開日期 2020/07/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE