簡易檢索 / 詳目顯示

研究生: 林沂樺
Yi-Hua Lin
論文名稱: 5.8GHz CMOS 自振式混頻器與應用於非接觸心肺感測之24 GHz CMOS 雙推式注入鎖定振盪器設計
Development of 5.8 GHz CMOS Self-Oscillating Mixer and 24 GHz CMOS Push-Push Injection-Locked Oscillator for Non-Contact Human's Heartbeat and Respiration Detection Radar Design
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 林丁丙
Ding-Bing Lin
黃建彰
Chien-Chang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 55
中文關鍵詞: 注入鎖定振盪器自振式混頻器生理訊號量測
外文關鍵詞: injection-locked oscillator, self-oscillating mixer, vital-sign detection
相關次數: 點閱:316下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係使用TSMC 0.18μm CMOS 製程研製之5.8 GHz自振式混頻器晶片與24 GHz雙推式注入鎖定振盪器晶片。自振式混頻器採用混頻器堆疊至壓控振盪器上之電路架構,讓混頻器電流可被壓控振盪器之交叉耦合對重複利用,藉此達到降低電路面積與功耗之目的。雙推式注入鎖定振盪器設計採用注入鎖定除頻器結合雙推式輸出緩衝器之方式,使電路具24 GHz之注入與輸出埠,同時提供除頻後之12 GHz差動輸出訊號。此外,本論文將雙推式注入鎖定振盪器晶片鎊線封裝於印刷電路板上,搭配市售射頻電路、微分器與收發天線陣列組成24 GHz自我注入鎖定雷達,應用於非接觸式生理訊號感測。該雷達系統置於受測者前50公分處進行量測驗證,觀察人體每分鐘之呼吸及心跳次數,並與血氧濃度計量測結果相比較,驗證雷達系統之有效性。


    This thesis develops a 5.8 GHz self-oscillating mixer monolithic integrated circuit (MMIC) and a 24 GHz push-push injection-lock oscillator (PPILO) MMIC using the TSMC 0.18-μm CMOS 1P6M process. The self-oscillating mixer is realized by an individual mixer stacking on a voltage-controlled oscillator (VCO). Therefore, the mixer current can be reused by the VCO for chip area and current reduction. In addition, an injection-locked frequency divider is combined with an injection mixer to form a PPILO. Hence, it can be used to transmit and receive 24-GHz signals and 12-GHz frequency-divided outputs. The PPILO chip is packaged on a print-circuit board, and then connected with commercial low noise amplifier, power detector, baseband amplifier and differentiator , antennas to implement a self-injection-locked radar for human heartbeat and respiration detection. This vital-sign radar can successfully detect the human heartbeat and respiration at a distance of about 50 cm. The measured results are in a good agreement with those acquired by the finger pulse oximeter.

    摘要...................................................i Abstract..............................................ii 目錄.................................................iii 第一章 緒論...........................................1 1-1 研究動機與目的...................................1 1-2 文獻探討.........................................4 1-3 章節說明.........................................8 第二章 5.8 GHz CMOS自振式混頻器研製...................9 2-1 共用電流之自振式混頻器架構與原理.................9 2-2 5.8 GHz CMOS自振式混頻器設計....................17 2-3 5.8 GHz CMOS自振式混頻器量測結果................20 第三章 24 GHz CMOS 雙推式注入式鎖定振盪器研製........24 3-1 注入式鎖定除頻器與雙推式輸出緩衝器架構與原理....24 3-2 24 GHz雙推式注入式鎖定振盪器設計................29 3-3 24 GHz雙推式注入式鎖定振盪器量測結果............32 第四章 24-GHz非接觸式心肺感測雷達模組研製............36 4-1 注入式鎖定振盪器之電路測試板設計................36 4-2 市售積體電路、微分器與天線陣列之電路測試版設計..39 4-2-1功率偵測器之電路測試板設計...................39 4-2-2微分器與天線設計................. ...........40 4-3雷達模組整合及量測...............................42 第五章 結論..........................................51 參考文獻..............................................52

    [1]A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A.Kovac, “0.25 μm CMOS and BiCMOS single chip direct conversion Doppler radars for remote sensing of vital signs,” in IEEE Int. Solid State Circuits Conf. Dig., Feb. 2002, pp. 348–349.
    [2] Y.Xiao, J. Lin, O. Boric-Lubecke, andM. Lubecke, “Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the -band,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 2023–2032, May 2006.
    [3]C. -Z. Li, Y. -M. Xiao, and J. -S. Lin “A 5 GHz Double-Sideband Radar Sensor Chip in 0.18 μm CMOS for Non-Contact Vital Sign Detection ,” IEEE microwave and wireless components letters, Vol. 18, No. 7, July 2008
    [4]A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovac, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, Mar. 2004, pp. 838–848.
    [5] R. Fletcher and J. Han, “Low-cost differential front-end for Doppler radar vital sign monitoring,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 1325–1328.
    [6] J. H. Park, B. J. Jang, and J. G. Yook, “0.18 μm CMOS receiver front-end for non-invasive cardiopulmonary monitoring,” in IEEE Asia–Pacific Microw. Conf. Dig., Dec. 2008, pp. 1–4.
    [7] Y. Yan, C. Li, and J. Lin, “Effects of I/Q mismatch on measurement of periodic movement using a Doppler radar sensor,” in Proc. IEEE Radio Wireless Symp., Jan. 2010, pp. 196–199.
    [8]Z. Peng et al., “A portable FMCW interferometry radar with programmable low-IF architecture for localization, ISAR imaging, and vital sign tracking,” IEEE Trans. Microw. Theory Techn., Dec.2016.
    [9]B.-K. Park, O.-B. Lubecke, V.M. Lubecke “Arctangent Demodulation With DC Offset Compensation in Quadrature Doppler Radar Receiver Systems,” IEEE transactions on microwave theory and techniques, Vol. 55, No. 5, May 2007
    [10] R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no. 6, pp. 351–357, Jun. 1946.
    [11] F.-K.Wang et al., “A novel vital-sign sensor based on a self-injection locked oscillator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 4112–4120, Dec. 2010.
    [12] P.-H. Hsieh, Jay Maxey, C.-K. Ken Yang “Minimizing the Supply Sensitivity of a CMOS Ring Oscillator Through Jointly Biasing the Supply and Control Voltages,” IEEE journal of solid-state circuits, vol. 44, no. 9, Sep. 2009
    [13] P. Andreani, A. Fard“A 2.3GHz LC-tank CMOS VCO with optimal phase noise performance,” IEEE International Solid State Circuits Conference ,2006
    [14] C.-C. Ho, C.-W. Kuo, C.-C. Hsiao, and Y.-J. Chan ,“A 2.4 GHz low phase noise VCO fabricated by 0.18 μm CMOS technologies,” International Symp. VLSI Technology, System and Application ,Oct. 2003, pp. 144-146.
    [15]K. L. Fong, R. G. Meyer, “Monolithic RF active mixer design”, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 3, Mar. 1999.
    [16]D.-H. Kim and J.-S. Rieh, “A single-balanced 60-GHz down-conversion mixer in 0.13-μm CMOS technology for WPAN applications,” in 34th International Conference Infrared, Millimeter, and Terahertz Waves. Sept. 2009, pp. 1–2.
    [17]K. Munusamy and Z. Yusoff, ”A highly linear CMOS down conversion double balanced mixer”, in Proc. ICSE, 2006, Malaysia.
    [18]H.-K. Chiou, and T.-Y. Yang, “Low-loss and broadband asymmetric broadside-coupled balun for mixer design in 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, Apr. 2008.
    [19]T. Chang and J. Lin, “1-11 GHz ultra-wideband resistive ring mixer in 0.18-µm CMOS technology,” in IEEE Radio Freq. Integr. Circuits Symp., 2006.
    [20] I. Higgins, “Performance of self-oscillating GaAs M.E.S.F.E.T. mixers at X-band,” Electron. Lett., vol. 12, no. 23, pp. 605–606, Nov.1976.
    [21] Y. Tajima, “GaAs FET applications for injection-locked oscillators and self-oscillating mixers,” IEEE Trans. Microwave Theory Tech.,vol. 27, no. 7, pp. 629–632, July 1979.
    [22] K. S. Ang, M. Underhill, and I. Robertson, “Balanced monolithic oscillators at K- and Ka-band,” IEEE Trans. Microwave Theory Tech.,vol. 48, no. 2, pp. 187–193, Feb. 2000.
    [23] T.-P. Wang, C.-C. Chang, R.-C. Liu, M.-D. Tsai, K.-J. Sun, Y.-T. Chang, L.-H. Lu, and H. Wang, “A low-power oscillator mixer in 0.18-μm CMOS technology,” IEEE Trans. Microwave Theory Tech.,vol. 54, no. 1, pp. 88–95, Jan. 2006.
    [24] A. Liscidini, A. Mazzanti, R. Tonietto, L. Vandi, P. Andreani, and R. Castello, “Single-stage low-power quadrature RF receiver front- end: The LMV cell,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2832–2841, Dec. 2006.
    [25] B. R. Jackson and C. E. Saavedra, “A dual-band self-oscillating mixer for C-band and X-band applications,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 2, pp. 318–323, Feb. 2010.
    [26] J.-Y. Kim and W.-Y. Choi, “30 GHz CMOS self-oscillating mixer for self-heterodyne receiver application,” IEEE Microwave Wireless Comp. Lett., vol. 20, no. 6, pp. 334–336, June 2010.
    [27] S. S. K. Ho and C. E. Saavedra, “A low-noise self-oscillating mixer using a balanced VCO load,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 8, pp. 1705–1712, Aug. 2011.
    [28]M.Törmänen; J.Lindstrand; H.Sjöland,“A 13dBm 60 GHz-band injection locked PA with 36% PAE in 65nm CMOS,” Asia-Pacific Microwave Conference, 2011.
    [29]K. Yamamoto and M. Fujishima, “55 GHz CMOS frequency divider with 3.2 GHz locking range,” in Proc. 30th Eur. Solid-State Circuits Conf., Sep. 2004, pp. 135–138.
    [30]Hamid R. Rategh, Thomas H. Lee, “IEEE Superharmonic Injection-Locked Frequency Dividers,” IEEE journal of solid-state circuits, Vol. 34, No. 6, June.1999.
    [31] K.-H. Tsai, L.-C. Cho, J.-H. Wu, S.-I. Liu, “3.5mW W-Band Frequency Divider with Wide Locking Range in 90nm CMOS Technology,”Solid-State Circuits Conference ,Feb. 2008.
    [32]C. Li and J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 567–570.
    [33]C. Li, Y. Xiao, and J. Lin, “Experiment and spectral analysis of a low-power Ka-band heartbeat detector measuring from four sides of a human body,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4464–4471, Dec. 2006.
    [34]T. Y. J. Kao, A. Y. K. Chen, Y. Yan, S. Tze-Min, and L. Jenshan, “A flip-chip-packaged and fully integrated 60 GHz CMOS micro-radar sensor for heartbeat and mechanical vibration detections,” in IEEE Radio Freq. Integr. Circuits Symp., 2012, pp. 443–446.
    [35]Yi-Hsien Cho, Ming-Da Tsai, Hong-Yeh Chang, Chia-Chi Chang, Huei Wang, “A Low Phase Noise 52-GHz Push-Push VCO in 0.18-μm Bulk CMOS Technologies,” IEEE Radio Frequency Integrated Circuits Symposium,2005.
    [36]Ching-Hung Chiu, Kung-Hao Liang Hong-Yeh Chang,,and Yi-Jen Chan, A Low Phase Noise 26-GHz Push-Push VCO with A Wide Tuning Range in 0.18-μm CMOS Technology,” Asia-Pacific Microwave Conference ,2006.
    [37]E. Armstrong, “Some recent developments in the audion receiver,”Proc. IRE, vol. 3, no. 3, pp. 215–238, Sept. 1915.
    [38]B. Razavi , Design of Analog CMOS Integrated Circuits, McGraw-Hill Companies,Inc.,2001.
    [39]V. Vidojkovic, J. V. D. Tang, A. Leeuwenburgh, and A. H. M. V. Roermund, “A low-voltage folded-switching mixer in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, pp. 1259–1264, Jun. 2005.
    [40]P. Andreani and H. Sjöland, “Tail current noise suppression in RF CMOS VCOs,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 342–348, Mar. 2002.
    [41] B. Razavi, “A study of injection pullingand locking in oscillators,” IEEE J. Solid-StateCircuits, vol. 39, no. 9, pp. 1415 -1424, Sept. 2004.
    [42]B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice-Hall, 1998, pp.182-183.
    [43]Pin-Hao Feng and Shen-Iuan Liu, “Divide-by-Three Injection-Locked Frequency Dividers Over 200 GHz in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 405-416, Feb. 2013.
    [44]Chung-Yu Wu and Chi-Yao Yu, “Design and Analysis of a Millimeter-Wave Direct Injection-Locked Frequency Divider With Large Frequency Locking Range,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1649-1658, Aug. 2007.
    [45] ] A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and design of injection-locked LC dividers for quadrature generation,” IEEE J. Solid-State Circuits, vol.39, no.9.1425-1433,Sep.2004

    QR CODE