簡易檢索 / 詳目顯示

研究生: 郭斐茜
Fei-Chien Kuo
論文名稱: 捐血行為之軌跡分析
Trajectory Analysis of Blood Donation Behavior
指導教授: 林希偉
Shi-Woei Lin
口試委員: 王敏
Min Wang
林承哲
Cheng-Jhe Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 70
中文關鍵詞: 時間序列分群序列分析序列分群回返行為捐血
外文關鍵詞: Time series clustering, sequence analysis, sequence clustering, return behavior, blood donation
相關次數: 點閱:357下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 維持穩定血液來源及促使捐血者持續捐血已成為當代醫療的重要議題。本研究利用2010至2014年台北捐血中心資料庫之捐血記錄,將每位捐血者之捐血歷史以時間序列(time series)與序列(sequence)型態呈現,並運用時間序列分群(time series clustering)及序列分群(sequence clustering)方式分析捐血行為,探究捐血人的主要型態與區隔這些族群的重要影響因素。研究結果指出序列分群更適用於此短期序列捐血資料,並得知捐血者的主要類型包括一次捐血者、一年捐血者、中途退出捐血者及持續捐血者。透過基於置換檢驗(permutation test)的變異數分析,本研究發現捐血量及是否為首次捐血顯著影響捐血者之回返行為。迴歸樹則指出高捐血量(500c.c.)與在固定式捐血點捐血的捐血者較易成為長期捐血者;此外,就首捐者而言,年齡高於三十歲的捐血者較易產生持續之回返行為。透過了解捐血者之回返行為與影響捐血人型態之變項,本研究結果可做為管理者針對不同類型捐血者進行管理介入與加強提醒的依據,並可提供捐血機構未來招募及維持捐血量的重要決策參考。


    How to maintain stable supply of blood and to promote blood donors to donate regularly has been an important issue in a health care system. This study aims to use the sophisticated time series clustering and sequence clustering methods to investigate blood donors’ donation trajectories to categorize blood donors based on their donation behaviors and to investigate the associations between donors’ characteristics and their return behaviors. By analyzing the data containing the donation history from year 2010 to 2014 for all donors in the northern Taiwan, this study confirmed that sequence clustering approach outperforms time series clustering approach for data of short donation history. Blood donors can be classified into one-time donors, one-year donors, drop-out donors and regular donors based on their donation trajectories. An analysis of variance (ANOVA) based on permutation tests shows that donation volume and whether the donor is the first-time donor significantly affect their return behaviors. Regression tree also points out that (1) those who donate higher volume (i.e., 500 c.c.) and donate at the fixed site tend to become regular donors, and (2) those who older than 30 years old are more likely to return regularly. Through identifying the segments of blood donors and the corresponding key transition behaviors in their donation trajectories, the study can help blood centers to make better managerial interventions such as designing better reminding mechanisms or recruitment strategies, and is expected to make substantial contributions to the field of blood supply chain management.

    CHAPTER 1 Introduction 1.1 Background and Motivation 1.2 Purpose of the Research 1.3 Overview of the Thesis CHAPTER 2 Literature Review 2.1 Time Series and Sequence Data 2.2 Cluster Analysis 2.2.1 Time Series Clustering 2.2.2 Sequence Clustering 2.3 Blood Donors’ Return Behavior Analysis 2.3.1 Relation Between Demographics Characteristics and Return Behaviors 2.3.2 Motivation of the Donors 2.3.3 Cluster Analysis in Blood Donation Analysis CHAPTER 3 Method 3.1 Overview of the Methods Used in this Study 3.2 Similarity/Dissimilarity Measures in Time Series 3.3 Similarity/Dissimilarity Measures in Sequence 3.4 Clustering Analysis 3.5 Discrepancy Analysis Based on Generalized ANOVA 3.6 Data CHAPTER 4 Results of Time Series Clustering Analysis 4.1 Data Description of Time Series 4.2 Time Series Clustering CHAPTER 5 Results of Sequence Clustering Analysis 5.1 Data Pre-processing 5.2 Preliminary Graphical Analysis 5.3 Sequence Clustering 5.4 Result of Discrepancy Analysis CHAPTER 6 6.1 Conclusion 6.2 Limitations and Future Directions Reference

    Aassve, A., Billari, F. C., and Piccarreta, R., “Strings of adulthood: A sequence analysis of young British women’s work-family trajectories,” European Journal of Population/Revue européenne de Démographie, 23(3-4), 369-388 (2007).

    Abbott, A., & Tsay, A., “Sequence analysis and optimal matching methods in sociology: Review and prospect,” Sociological methods & research, 29(1), 3-33 (2000).

    Aghabozorgi, S., Shirkhorshidi, A. S., & Wah, T. Y., “Time-series clustering–A decade review,” Information Systems, 53, 16-38 (2015).

    Aghabozorgi, S., & Teh, Y. W., “Stock market co-movement assessment using a three-phase clustering method,” Expert Systems with Applications, 41(4), 1301-1314 (2014).

    Antunes, C. M., & Oliveira, A. L., “Temporal data mining: An overview,” Proceedings of the 7th ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, Ca, USA (2001).

    Apparicio, P., Cloutier, M. S., Chadillon‐Farinacci, V., Charbonneau, J., & Delage, G., “Blood donation clusters in Québec, Canada (2003–2008): spatial variations according to sex and age,” Vox sanguinis, 106(4), 297-306 (2014).

    Ashoori, M., & Taheri, Z., “Using clustering methods for identifying blood donors behavior.” Proceedings of the 5th Iranian Conference on Electrical and Electronics Engineering, Iran, 4055-4057 (2013).

    Bagnall, A., Janacek, G., & Zhang, M., Clustering time series from mixture polynomial models with discretised data, University of East Anglia, England (2003).

    Bao, D., “A generalized model for financial time series representation and prediction,” Applied Intelligence, 29(1), 1-11 (2008).

    Batagelj, V., “Generalized Ward and related clustering problems,” Classification and related methods of data analysis, 67-74 (1988).

    Billari, F. C., & Piccarreta, R., “Analyzing demographic life courses through sequence analysis,” Mathematical Population Studies, 12(2), 81-106 (2005).

    Blair-Loy, M., & DeHart, G., “Family and career trajectories among African American female attorneys,” Journal of Family Issues, 24(7), 908-933 (2003).

    Borkent‐Raven, B. A., Janssen, M. P., & Van Der Poel, C. L., “Demographic changes and predicting blood supply and demand in the Netherlands,” Transfusion, 50(11), 2455-2460 (2010).

    Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J., Classification and regression trees, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, USA (1984).

    Cadez, I., Heckerman, D., Meek, C., Smyth, P., & White, S., “Visualization of navigation patterns on a web site using model-based clustering,” Proceedings of the 6th ACM SIGKDD international conference on knowledge discovery and data mining, Boston, Ma, USA (2000).

    Custer, B., Schlumpf, K., Simon, T. L., Spencer, B. R., Wright, D. J., & Wilkinson, S. L., “Demographics of successful, unsuccessful and deferral visits at six blood centers over a 4‐year period,” Transfusion, 52(4), 712-721 (2012).

    de Almeida Neto, C., Mendrone Jr, A., Custer, B., Liu, J., Carneiro‐Proietti, A. B., Leão, S. A. C., Wright, D. L., Murphy, E. L., Sabino, E. C., “Interdonation intervals and patterns of return among blood donors in Brazil,” Transfusion, 52(4), 722-728 (2012).

    Drackley, A., Newbold, K. B., Paez, A., & Heddle, N., “Forecasting Ontario's blood supply and demand,” Transfusion, 52(2), 366-374 (2012).

    Elzinga, C. H., Sequence analysis: Metric representations of categorical time series. Sociological methods and research, 31(4), 3-29 (2006).

    Ernst, J., Nau, G. J., & Bar-Joseph, Z., “Clustering short time series gene expression data,” Bioinformatics, 21(suppl_1), i159-i168 (2005).

    Fayyad, U. M., Reina, C., & Bradley, P. S., “Initialization of Iterative Refinement Clustering Algorithms,” Proceedings of the 4th ACM SIGKDD international conference on knowledge discovery and data mining, New York, NY, USA (1998).

    Ferreira, D., Zacarias, M., Malheiros, M., & Ferreira, P., “Approaching process mining with sequence clustering: Experiments and findings,” Business Process Management, 360-374 (2007).

    Fujita, A., Shida, A., Fujioka, S., Kurihara, H., Okamoto, T., & Yanaga, K., “Clinical significance of Rho GDP dissociation inhibitor 2 in colorectal carcinoma,” International journal of clinical oncology, 17(2), 137-142 (2012).

    Gabadinho, A., & Ritschard, G., “Searching for typical life trajectories applied to childbirth histories,” Gendered life courses-Between individualization and standardization. A European approach applied to Switzerland, LIT Verlag Münster, Germany, 287-312 (2013).

    Germain, M., Glynn, S. A., Schreiber, G. B., Gelinas, S., King, M., Jones, M., Bethel, J., Tu, Y., “Determinants of return behavior: a comparison of current and lapsed donors,” Transfusion, 47(10), 1862-1870 (2007).

    Gilcher, R. O., & McCombs, S., “Seasonal blood shortages can be eliminated,” Current opinion in hematology, 12(6), 503-508 (2005).

    Glynn, S. A., Schreiber, G. B., Murphy, E. L., Kessler, D., Higgins, M., Wright, D. J., Mathew, S., Tu, Y., King, M., Smith, J. W., “Factors influencing the decision to donate: racial and ethnic comparisons,” Transfusion, 46(6), 980-990 (2006).

    Guam, H.-S., & Jiang, Q.-S., “Cluster financial time series for portfolio,” Proceedings of international conference on Wavelet Analysis and Pattern Recognition, Beijing, Beijing, China (2007).

    Guo, N., Wang, J., Ness, P., Yao, F., Dong, X., Bi, X., Mei, H., Li, J., He, W., Lu, Y., “Analysis of Chinese donors' return behavior,” Transfusion, 51(3), 523-530 (2011).

    Guralnik, V., & Karypis, G., “A scalable algorithm for clustering sequential data,” Proceedings of IEEE International Conference on the Data Mining, San Jose, Ca, USA (2001).

    Haigh, K. Z., Foslien, W., & Guralnik, V., “Visual Query Language: Finding patterns in and relationships among time series data,” Proceedings of the 7th SIAM international conference on Data Mining, Lake Buena Vista, Florida, USA (2004).

    Han, J., Pei, J., & Kamber, M., Data mining: concepts and techniques, Morgan Kaumann, USA (2011).

    Hesterberg, T., Moore, D. S., Monaghan, S., Clipson, A., & Epstein, R., “Bootstrap methods and permutation tests,” Introduction to the Practice of Statistics, 5, 1-70, W. H. Freeman, Germany (2005).

    Holdershaw, J., Gendall, P., & Wright, M., “Predicting blood donation behaviour: further application of the theory of planned behavior,” Journal of Social Marketing, 1(2), 120-132 (2011).

    Hynes, K., & Clarkberg, M., “Women's employment patterns during early parenthood: A group‐based trajectory analysis,” Journal of Marriage and Family, 67(1), 222-239 (2005).

    Iglesias, F., & Kastner, W., “Analysis of similarity measures in times series clustering for the discovery of building energy patterns,” Energies, 6(2), 579-597 (2013).

    Jain, A. K., Murty, M. N., & Flynn, P. J., “Data clustering: a review.” ACM computing surveys (CSUR), 31(3), 264-323 (1999).

    Joseph, D., Fong Boh, W., Ang, S., & Slaughter, S. A., “The Career Paths Less (or More) Traveled: A Sequence Analysis of IT Career Histories, Mobility Patterns, and Career Success,” MIS Quarterly, 36(2), (2012).

    Kasraian, L., & Maghsudlu, M., “Blood donors’ attitudes towards incentives: influence on motivation to donate,” Blood Transfusion, 10(2), 186 (2012).

    Kasraian, L., & Tavassoli, A., “Relationship between first-year blood donation, return rate for subsequent donation and demographic characteristics,” Blood Transfusion, 10(4), 448 (2012).

    Kaufman, L., & Rousseeuw, P. J., “Clustering large data sets,” Pattern Recognition in Practice, Volume II (pp. 425-437), North-Holland, Netherland (1986).

    Keogh, E., Chu, S., Hart, D., & Pazzani, M., “Segmenting time series: A survey and novel approach,” Data mining in time series databases, 57, 1-22, World Scientific, Singapore (2004).

    Keogh, E., & Kasetty, S., “On the need for time series data mining benchmarks: a survey and empirical demonstration,” Data Mining and knowledge discovery, 7(4), 349-371 (2003).

    Lacetera, N., Macis, M., & Slonim, R., “Economic rewards to motivate blood donations,” Science, 340(6135), 927-928 (2013).

    Lesnard, L., “Optimal matching and social sciences , ” INSEE, Série des Documents de Travail du Crest, France (2006).

    Lesnard, L., “Setting cost in optimal matching to uncover contemporaneous socio-temporal patterns,” Sociological methods & research, 38(3), 389-419 (2010).

    Liao, T. W., “Clustering of time series data—a survey,” Pattern recognition, 38(11), 1857-1874 (2005).

    Lin, J., Keogh, E., Lonardi, S., & Chiu, B., “A symbolic representation of time series, with implications for streaming algorithms,” Proceedings of the 8th ACM SIGMOD/POD conference on data mining and knowledge discovery, San Diego, Ca, USA (2003).

    Lin, J., Keogh, E., Lonardi, S., Lankford, J. P., & Nystrom, D. M., “Visually mining and monitoring massive time series,” Proceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data mining, Seattle, WA, USA (2004).

    Moen, P., & Sweet, S., “From ‘work–family’ to ‘flexible careers’ A life course reframing,” Community, Work & Family, 7(2), 209-226 (2004).

    Oates, T., Firoiu, L., & Cohen, P. R., “Using dynamic time warping to bootstrap HMM-based clustering of time series.” Sequence Learning, (pp. 35-52), Springer, Germany (2000).

    Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria, J., Keogh, E., “Searching and mining trillions of time series subsequences under dynamic time warping,” Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, Beijing, China (2012).

    Ramoni, M. F., Sebastiani, P., & Kohane, I. S., “Cluster analysis of gene expression dynamics,” National Academy of Sciences, USA, 99(14), 9121-9126 (2002).

    Rebbapragada, U., Protopapas, P., Brodley, C. E., & Alcock, C., “Finding anomalous periodic time series,” Machine learning, 74(3), 281-313 (2009).

    Reynolds, A., Richards, G., & Rayward-Smith, V., “The application of k-medoids and pam to the clustering of rules,” Intelligent Data Engineering and Automated Learning–IDEAL, 173-178 (2004).

    Rohwer, G., & Pötter, U., “TDA User’s Manual,” Bochum Ruhr-Universität Bochum, Germany (2002).

    Sarstedt, M., & Mooi, E., “Cluster analysis,” A concise guide to market research (pp. 273-324), Springer, Germany (2014).

    Schlumpf, K. S., Glynn, S. A., Schreiber, G. B., Wright, D. J., Randolph Steele, W., Tu, Y., Hermansen, S., Higgins, M. J., Garratty, G., Murphy, E. L., “Factors influencing donor return,” Transfusion, 48(2), 264-272 (2008).

    Schoon, I., “Teenage job aspirations and career attainment in adulthood: A 17-year follow-up study of teenagers who aspired to become scientists, health professionals, or engineers,” International Journal of Behavioral Development, 25(2), 124-132 (2001).

    Schreiber, G. B., Sharma, U., Wright, D., Glynn, S., Ownby, H., Tu, Y., Garratty, G., Piliavin, J., Zuck, T., Gilcher, R., “First year donation patterns predict long‐term commitment for first‐time donors,” Vox sanguinis, 88(2), 114-121 (2005).

    Settersten Jr, R. A., & Mayer, K. U., “The measurement of age, age structuring, and the life course,” Annual review of sociology, 23(1), 233-261 (1997).

    Shahnawaz, M., Ranjan, A., & Danish, M., “Temporal data mining: an overview,” International Journal of Engineering and Advanced Technology, 1(1), 2249-8958 (2011).

    Sharma, A., & Gupta, P., “Predicting the number of blood donors through their age and blood group by using data mining tool,” International Journal of communication and computer Technologies, 1(6), 6-10 (2012).

    Steinbach, M., Tan, P.-N., Kumar, V., Klooster, S., & Potter, C., “Discovery of climate indices using clustering,” Proceedings of the 9th ACM SIGKDD international conference on Knowledge discovery and data mining, Washington, DC, USA (2003).

    Studer, M., Ritschard, G., Gabadinho, A., & Müller, N., “Discrepancy analysis of complex objects using dissimilarities,” Advances in knowledge discovery and management, 3-19, Springer, Germany (2010).

    Venkateswarlu, B., & Raju, P. G., “Mine Blood Donors Information through Improved K-Means Clustering,” Andhra University, India (2013).

    Wei, C.-P., Lee, Y.-H., & Hsu, C.-M., “Empirical comparison of fast partitioning-based clustering algorithms for large data sets,” Expert Systems with Applications, 24(4), 351-363 (2003).

    Weidmann, C., Schneider, S., Litaker, D., Weck, E., & Klüter, H., “A spatial regression analysis of German community characteristics associated with voluntary non‐remunerated blood donor rates,” Vox sanguinis, 102(1), 47-54 (2012).

    Xu, B., Yang, Y., Liang, H., & Zhou, Y., “An all‐atom knowledge‐based energy function for protein‐DNA threading, docking decoy discrimination, and prediction of transcription‐factor binding profiles,” Proteins: Structure, Function, and Bioinformatics, 76(3), 718-730 (2009).

    Yu, P., Chung, K., Lin, C., Chan, J., & Lee, C., “Predicting potential drop‐out and future commitment for first‐time donors based on first 1.5‐year donation patterns: the case in Hong Kong Chinese donors,” Vox sanguinis, 93(1), 57-63 (2007).

    無法下載圖示 全文公開日期 2023/02/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE