簡易檢索 / 詳目顯示

研究生: 賴柏瑋
Po-Wei Lai
論文名稱: 1,4-二芳基三苯荑衍生物合成及光物理研究
Study on the Synthesis and Photophysics of 1,4-Diaryltriptycene Derivatives
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 蔡伸隆
Shen-Long Tsai
蔡協致
Hsieh-Chih Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 130
中文關鍵詞: 二芳基三苯荑合成光物理
外文關鍵詞: Synthesis, Photophysics, Diaryltriptycene Derivatives
相關次數: 點閱:206下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Tiptycene是一種立體分子,具有防止堆疊的特性,近年來針對triptycene分子的研究愈來愈多,在材料科學方面,科學家將triptycene混合在液晶分子中可以讓液晶分子排列更整齊,或是合成出triptycene的聚合物分子,加強防止堆疊的效果,這些都是triptycene應用在材料方面的研究,但是針對單一triptycene分子衍生物的研究,相較之下數量少了很多,因此我們將探討一系列1,4-diaryltriptycene的性質。
本篇論文探討一系列具有1,4-diaryltriptycene骨架的對稱衍生物,利用儀器量測各個分子的吸收光譜、螢光光譜、分子理論計算模型,與文獻中不具有triptycene結構的分子比較,討論triptycene是否會影響到分子的光物理性質。
我們再將所有1,4-diaryltriptycene分子互相比較,討論不同芳香苯環結構,對於分子的光物理性質影響。此外,我們還將探討濃度對triptycene分子光物理性質的影響。
最後,我們構思triptycene分子在日後的研究,是否可以應用在一些最近發展非常迅速的研究上,如染料敏化太陽能電池等。


Triptycene is a three-dimensional molecules, it can prevents the triptycene molecules from aggregating. In recent years, there are much researches in triptycene molecules, the scientists mixed triptycene with the liquid crystal, it can make the liquid crystal arrangement much orderly, or synthesized the triptycene polymer molecules to make the aggregation much weaker. These are the researches in materials. However, the study of the molecular triptycene derivatives is much less the former. So we decided to do the research in 1-4diaryltriptycene derivatives
This thesis discusses a series of 1,4-diaryl triptycene derivatives which have the symmetrical skeleton, we use various instruments to measure their absorption spectra of molecules, fluorescence spectroscopy, molecular theory model, and compare them to the literature which does not have the triptycene structure and discussed what will affect the photophysical properties of triptycene molecules.
We also compare all the molecules to each other, discussing the effect of different aromatic phenyl groups in the photophysical properties of molecules. Futhermore, we also discuss the effect of concentration to photophysical properties of triptycene molecules.
Finally, we suggested the development of triptycene molecules in future studies, such as dye-sensitized solar cells, which is the popular research in recent years.

謝誌 I Abstract III 摘要 IV Figure目錄 VII Scheme 目錄 IX Table目錄 X 第一章 緒論 1 1-1 Diels-Alder反應 1 1-2三苯荑(triptycene) 2 1-3分子電子躍遷 4 1-4分子內電荷轉移(intermolecular charge transfer ; ICT) 5 1-5溶劑效應(solvent effect) 6 1-6 Stokes shift 7 1-7螢光量子產率(fluorescene quantum yield) 8 1-8化學位移(chemical shift) 9 1-9研究動機及目的 10 第二章 結果與討論 12 2-1化合物合成之探討 12 2-1-1起始物1a、1b及DBT之合成 12 2-1-2 DPT、DTT、DFT、DST、DCPT及DNMPT之合成 14 2-1-3 IFT之合成 15 2-2化合物於溶液中之光物理性質研究 16 2-2-1 DPT之光譜分析 16 2-2-2 IFT之光譜分析 18 2-2-3 DTT之光譜分析 20 2-2-4 DFT之光譜分析 22 2-2-5 DST之光譜分析 24 2-2-6 DCPT之光譜分析 26 2-2-7 DNMPT之光譜分析 28 2-3不同苯環結構對光物理性質之影響 30 2-4各分子光物理性質之比較 32 2-4-1比較DPT、IFT與DST不同共軛苯環 35 2-4-2比較DPT、DTT與DFT不同芳香苯環 36 2-4-3比較DPT、DCPT與DNMPT不同官能基 37 2-5所有分子與不具triptycene分子結構之文獻比較 38 2-5-1 DPT與DPB之比較 38 2-5-2 IFT與IDF之比較 41 2-5-3 DTT與DTB之比較 44 2-5-4 DFT與DFB之比較 46 2-5-5 DST與DSB之比較 47 2-5-6 DCPT與DCPB之比較 49 2-5-7 DNMPT與DNMPB之比較 51 2-6不同苯環結構對triptycene中心氫原子化學位移之影響 52 2-6-1比較DPT、DTT、DFT與IFT之不同芳香苯環 53 2-6-2比較DPT與DST之不同苯環共軛長度 53 2-6-3比較DPT、IFT、DCPT與DNMPT之不同官能基 53 2-7消光係數 55 2-8螢光量子產率 60 第三章 結論 61 3-1研究結果 61 3-2未來展望 62 第四章 實驗部份 63 4-1實驗儀器 63 4-2實驗藥品與溶劑 64 4-3吸收度之量測 65 4-4螢光量子產率之量測 66 4-5化合物結構、分子式及分子量 67 4-6實驗流程圖 70 4-7實驗步驟 74 第五章 參考文獻 85 附錄 87

1. M. Berthelot; C. R. Hebd, Seances Acad. Sc. 1866, 62, 905.
2. O. Diels; K .Alder. Justus Liebig's Annalen der Chemie. 1928, 460, 98-122.
3. P. D. Bartlett; S. G. Cohen, J.Am.Chem.Soc. 1942, 64, 2649-2653.
4. G. Wittig; R. Ludwig, Angew.Chem. 1956, 68, 40.
5. L. Friedman, J. Am, Chem. Soc. 1963, 86, 1449.
6. T.M. Long; T. M. Swager, J. Mater. Chem. 2002, 12, 3407-3412.
7. J-S.Yang; T. M. Swager, J. Am. Chem. Soc. 1998, 120, 11864-11873.
8. T. M. Swager, Acc. Chem. Res. 2008, 41, 1181-1189.
9. D. A. Skoog; F. J. Holler; T. A. Nieman, Principles of Instrumental Analysis, Sixth Edition 2006.
10. K. Rotkiewicz; K.H. Grellmann; Z. R. Grabowski, Chem. Phys. Lett. 1973, 19, 315-318.
11. K. Rotkiewicz; Z. R. Grabowski; A. Krowczynski; W. J. Kuhnle, Lumin. 1976, 12, 877.
12. E. Z. Lippert, Electrochem. 1957, 61, 962.
13. N.Mataga; Y. Kaifu; M. Koizumi, Bull. Chem. Soc. Jpn. 1955, 28, 690.
14. N.Mataga; Y. Kaifu; M. Koizumi, Bull. Chem. Soc. Jpn. 1956, 29, 465-470.
15. E. Lippart; W.Luder; H.Boos, Proceedings of the Fourth International Meeting on Advances in Molecular Spectroscopy. 1959.
16. Cazes J, Encyclopedia of chromatography. 2004.
17. A. M. Brouwer, Pure Appl. Chem. 2011, 83, 2213-2228.
18. J. B. Lambert; H. F. Shurvell; D. A. Lightner; R. G. Cooks, Organic Structural Spectroscopy, Prentice-Hall, Inc. 1998.
19. X. Lu; Q. Feng; T. Lan; G. Zhou; Z. S. Wang. Chem. Mater. 2012, 24, 3179-3187.
20. C. P. Kuo; Y. S. Lin; M. K. Leung, J .Polym. Sci. Part A: Polym. Chem. 2012, 50, 5068-5078.
21. 饒育禎,國立清華大學化學系碩士論文, 2007.
22. 沈韋廷,國立東華大學化學系碩士論文, 2012.
23. T. M. Swager; B. V. Veller; D. Robinson, Angew. Chem. Int. Ed. 2012, 51, 1182-1186.
24. T. Sandmeyer, Eur. J. Inorg. Chem. 1884, 17, 1633-1635.
25. A. Lohr; T. M. Swager, J. Mater. Chem. 2010, 20, 8107-8111.
26. N. Miyaura; K. Yamada; A. Suzuki, Tetrahedron Letters. 1979, 20, 3437-3440.
27. J-S. Yang; H-H. Huang; S-H. Lin, J. Org. Chem. 2009, 74, 3974-3977.
28. D. Thirion; C. Poriel; J. Rault-Berthelot; F. Barriere; O. Jeannin, J. Chem. Eur. 2010, 16, 13646-13658.
29. W-S. Tan; Ch. Prabhakar; Y-H. Liu; S-M Peng; J-S. Yang, Photochem. Photobiol. Sci. 2014, 13, 211-223.
30. L. Chen; S. M. Mahmoud; X-D Yin; R. A. Lalancette; A. Pietrangelo, Org. Lett. 2013, 15, 5970-5973.
31. D. Thirion; C. Poriel; R.Metivier; J. Rault-Berthelot; F. Barriere; O. Jeannin, J. Chem. Eur. 2011, 17, 10272-10287.
32. M. Hemgesberg; D. M. Ohlmann; Y. Schmitt; M. R. Wolfe; M. K. Muller; B. Erb; Y. Sun; L. J. Goosen; M. Gerhards; W. R. Thiel, Eur. J. Org. Chem. 2012, 11, 2142-2151.
33. A. Peter; M. Rowlands; G. Clements, J. Synth.Org. Chem. 1987, 1, 51-53.
34. B. J. Laughlin; T. L. Duniho; S. J. El Homsi; B. E. Levy; N. Deligonul; J. R. Gaffen; J. D. Protasiewicz; A. G. Tennyson; R. C. Smith, Org. Biomol. Chem. 2013, 11, 5425–5434.
35. A. Moneo; M. Fernanda; N. N. Carvalhoa; J. P. Teloa, J. Phys. Org. Chem. 2012, 25, 559–565.
36. 陳書婷,國立臺灣科技大學化工系碩士論文, 2014.
37. 陳書婷,國立臺灣科技大學化工系碩士論文, 2014.
38. T. Kitamura; M. Yamane; K. Inoue; M. Todaka; N. Fukatsu; Z-H. Meng; Y. Fujiwara, J. Am. Chem. Soc. 1999, 121, 11674-11679.
39. C. W. Anson; D. M. Thamattoor, J. Org. Chem. 2012, 77, 1693-1700.
40. D. Thirion; C. Poriel; R.Metivier; J. Rault-Berthelot; F. Barriere; O. Jeannin, J. Chem. Eur. 2011, 17, 10272-10287.
41. B. J. Laughlin; T. L. Duniho; S. J. El Homsi; B. E. Levy; N. Deligonul; J. R. Gaffen; J. D. Protasiewicz; A. G. Tennyson; R. C. Smith, Org. Biomol. Chem. 2013, 11, 5425–5434.

QR CODE