簡易檢索 / 詳目顯示

研究生: 吳弦聰
Hsien-Tsung Wu
論文名稱: 藉助超臨界流體之超細顏料微粒的製備與分散研究
Ultra-Fine Pigment Particles Formation and Dispersion with the Aid of Supercritical Fluid
指導教授: 李明哲
Ming-Jer Lee
林河木
Ho-mu Lin
口試委員: 陳瑞堂
Jui-Tang Chen
李夢輝
Meng-Hui Li
鄭文桐
Wen-Tung Cheng
陳延平
Yan-Ping Chen
陳立仁
Li-Jen Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 171
中文關鍵詞: 超細顏料微粒超臨界抗溶劑法超臨界二氧化碳輔助分散
外文關鍵詞: Ultra-fine pigment particles, Supercritical CO2-assisted dispersi, Supercritical anti-solvent
相關次數: 點閱:294下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用連續式超臨界抗溶劑法(SAS)成功製備三種顏料微粒,抗溶劑為二氧化碳,溶劑使用二甲基亞、氯與,在適當的程序變數操控下,如噴嘴直徑、顏料溶液濃度與流率、晶析溫度與壓力,可獲得最小平均粒徑為46 nm之球形red 177顏料微粒;478 nm(長軸長度)之棒狀blue 15:6顏料微粒與40 nm之球形green 36顏料微粒。
    於red 177顏料之實驗結果顯示,較小毛細管噴嘴內徑、低顏料溶液濃度、在超臨界區較低的二氧化碳+DMSO混合物密度,有利於產生較微細的顆粒。藉由實驗設計法獲得red 177顏料平均粒徑與顏料溶液濃度、流率及晶析槽內流體混合物密度之應答曲面,以及實驗條件的最適化。
    適中的顏料溶液濃度與壓力,以及較高的溫度能有效降低blue 15:6顏料晶體粒徑,另由MSMPR結晶槽之顆數均衡模式擬合blue 15:6 顏料微粒粒徑分佈數據,求得晶析動力參數,結果顯示其晶析機構為二次成核,且晶體之成長屬於擴散控制。
    於均相區下晶析之green 36顏料平均粒徑介於40~50 nm。以CSTR結晶槽模式計算顏料溶液噴射結束時流體混合物組成,與相圖比對發現製備之顆粒形態主要受制於溶劑與抗溶劑之相行為。當晶析過程於超臨界區域與過熱蒸汽相可製得奈米級的顆粒;而汽液共存區則得明顯聚集的微米級球狀顆粒。
    一系列實驗探討將1 wt% red 177顏料分散於PGMEA溶劑中,實驗結果發現在常溫常壓下採用40 wt % Hypermer PS3分散劑,可提供較佳的分散,及穩定顏料顆粒於PGMEA溶劑中;在超臨界二氧化碳參與下,添加1 wt % 親二氧化碳分散劑(Zonyl PSO-100)可進一步促進分散效果。較高的停滯溫度與壓力,及足夠的高壓停滯時間,亦有利於改善分散效果。分散體粒徑顯示與分散槽內流體相行為相關,適當的操作條件為348.2 K與20 MPa及20 min的高壓停滯時間,此條件下所製備之分散體的平均粒徑可小至148 nm,符合產業應用(100~200 nm)要求。穿透式電子顯微鏡(TEM)照片證實超臨界二氧化碳分散法可有效分散red 177顏料於PGMEA溶劑中。


    Ultra-fine particles of pigment red 177, blue 15:6, and green 36 were successfully prepared with a continuous supercritical anti-solvent (SAS) apparatus by using carbon dioxide as anti-solvent and dimethyl sulfoxide (DMSO), 1-chloronaphthalene, or quinoline as solvent. By properly manipulating the process parameters, such as diameter of the injector, concentration and flow rate of pigment solution, precipitation temperature and pressure, the minimum mean sizes of the collected samples can be as small as 46 nm for spherical red 177 particles, 478 nm (the length of major axis) for rod-like blue 15:6 particles, and 40 nm for spherical green 36 particles.
    For pigment red 177, the experimental results showed that smaller inside diameters of the capillary tube, lower concentrations of the pigment solution, and lower densities (in the supercritical region of carbon dioxide + DMSO mixtures) were favorable to produce smaller particles. With the aid of experimental design method, the response surface of particle size in terms of concentration of pigment solution, flow rate of pigment solution, and density of fluid mixtures in the precipitator was obtained and the optimal processing conditions were then estimated.
    It was found that moderate concentrations of pigment solution, moderate pressures, and higher temperatures could effectively reduce the particle sizes of pigment blue 15:6. The precipitation kinetic parameters were determined from the particle size distribution by using the population balance theory for a mixed-suspension, mixed-product-removal (MSMPR) precipitator. The correlated results indicated that secondary nucleation was dominant in the precipitation and diffusion controlled the particle growth.
    The mean particle sizes of the prepared pigment green 36 from this study were in a range of 40 nm to 50 nm as the precipitations were conducted in a homogeneous phase region. Mapping the estimated compositions of mixtures in a continuously stirred tank reactor (CSTR) precipitator at the end of pigment solution injection onto the phase diagram showed that the morphology of prepared particles was mainly governed by the phase behavior of anti-solvent + solvent mixtures. Nano-particles were obtained as the precipitation loci were manipulated within either supercritical or superheated vapor region through the SAS process, whereas micro-metric aggregated ball-like particles were produced as the precipitation loci passed by the vapor-liquid coexistence region.
    A series of experiments was also made to investigate the dispersion of 1 wt % of pigment red 177 particles in propylene glycol monomethyl ether acetate (PGMEA). It was found that 40 wt % of Hypermer PS3 dispersant could provide better dispersion and could stabilize the pigment particles in PGMEA at ambient condition. With the assistance of supercritical carbon dioxide (CO2), additional 1 wt % of CO2-philic dispersant, Zonyl FSO-100, could further enhance the dispersion. Holding the mixtures in dispersion chamber at higher temperatures and pressures for a sufficient period of time was also favorable to improve the dispersion. The size of the dispersed particles appeared to have a correlation with the phase behavior of the mixtures in the dispersion chamber. The preferable operating conditions were at 348.2 K and 20 MPa, and 20 min of holding time was long enough before rapidly releasing chamber’s pressure. Under the suggested operating conditions, the mean sizes of the dispersoids could be as small as 148 nm, which met the required range of 100 nm to 200 nm in industrial applications. The TEM images have proven that the supercritical carbon dioxide-assisted dispersion method could efficiently disperse the pigment particles in PGMEA.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 圖表索引 IX 第一章 前言 1 1-1 超臨界流體技術製備奈米微粒 2 1-1-1超臨界乾燥法 2 1-1-2超臨界溶液快速膨脹法 (RESS) 3 1-1-3氣體飽和溶液/懸浮液造粒法 (PGSS) 3 1-1-4超臨界抗溶劑法 (SAS) 4 1-2文獻回顧 6 1-2-1噴嘴設計與尺寸 7 1-2-2溶質溶液的濃度 8 1-2-3晶析溫度與壓力 10 1-2-4溶質溶液流率 11 1-2-5溶劑效應 12 1-2-6相行為效應 13 1-2-7晶析機制 15 1-2-8顆粒形態 16 1-3本研究重點 18 第二章 Red 177 顏料微粒製備與實驗設計法 31 2-1 實驗設計(experimental design)原理 31 2-1-1直交表法(orthogonal array) 32 2-1-1應答曲面法 35 2-2 實驗裝置與操作 36 2-3 實驗結果與討論 38 2-4本階段研究之結論 43 第三章 Blue 15:6 顏料微粒製備與顆數均衡方程式 62 3-1 MSMPR顆數均衡方程式 63 3-1-1結晶動力機構 67 3-2 實驗裝置與操作 69 3-3 實驗結果與討論 70 3-4 晶析動力學探討 74 3-4-1實驗數據處理 74 3-4-2粒徑分佈關聯結果與討論 75 3-5 本階段研究之結論 78 第四章 在不同相區下green 36顏料微粒製備 96 4-1 CSTR晶析槽模式 96 4-2 實驗裝置與操作 99 4-3 實驗結果與討論 100 4-4本階段研究之結論 103 第五章 超臨界流體之red 177顏料微粒分散 116 5-1 分散劑基本原理 117 5-2 實驗裝置與操作 121 5-3 實驗結果與討論 123 5-3-1常溫常壓下以Hypermer PS3分散劑進行分散程序 124 5-3-2 添加Zonyl FSO-100分散劑及超臨界二氧化碳分散程序 125 5-3-3 升壓速率與高壓停滯時間效應 127 5-3-4 停滯溫度與壓力效應 127 5-3-5 相行為效應 128 5-3-6 顏料分散體的觀察與分析 129 5-4本階段研究之結論 131 第六章 結論與建議 150 6-1 結論 150 6-2 建議 152 符號說明 154 參考文獻 159 作者簡介 169

    Bamberger, A. and G. Maurer, “High-Pressure Vapor-Liquid Equilibria in Binary Mixtures of Carbon Dioxide and Aromatic Hydrocarbons: Experimental Data and Correlation for CO2 + Acetophenone, CO2 +1-Chloronaphthalene, CO2 + Methyl Benzoate and CO2 + n-Propylbenzene,” J. Supercrit. Fluids, 7, 115-127 (1994).

    Bell, P.W., A.P. Stephens, C.B. Roberts and S.R. Duke, “High-Resolution Imaging of the Supercritical Antisolvent Process,” Experiments in Fluids, 38, 708-719 (2005).

    Benedetti, L., A. Bertucco and P. Pallado, “Production of Micronic Particles of Biocompatible Polymer Using Supercritical Carbon Dioxide ,” Biotech. Bioeng., 53, 232-237 (1997).

    Bleich, J., B.W. Muller and W. Wasmus, “Aerosol Solvent Extraction System - A New Microparticle Production Technique,” Int. J. Pharm., 97, 111-117 (1993).

    Bodmeier, R., H. Wang, D.J. Dixon, S. Maeson and K.P. Johnston, “Polymeric Microspheres Prepared by Spraying into Compressed Carbon Dioxide,” J. Pharm. R., 13, 1211-1217 (1995).

    Bristow, S., T. Shekunov, B.Y. Shekunov and P. York, “Analysis of the Supersaturation and Precipitation Process with Supercritical CO2,” J. Supercrit. Fluids, 21, 257-271 (2001).

    Cai, J.G., X.C. Liao and Z.Y. Zhou, “Microparticle Formation and Crystallization Rate of HMX Using Supercritical Carbon Dioxide Antisolvent Recrystallization,” The 4th International Symposium on Supercritical Fluids, 11-14 May, Sendai, Japan, 23-26 (1997).

    Chattopadhyay, P. and R.B. Gupta, “Supercritical CO2-Based Production of Fullerene Nanoparticles,” Ind. Eng. Chem. Res., 39, 2281-2289 (2000).
    Chattopadhyay, P. and R.B. Gupta, “Protein Nanoparticles Formation by Superctirtical Antisolvent with Enhanced Mass Transfer,” AIChE Journal, 48, 235-244 (2002).

    Cheng, W.T., C.W. Hsu and Y.W. Chih, “Dispersion of Organic Pigments Using Supercritical Carbon Dioxide,” J. Colloid Interf. Sci., 270, 106-112 (2004).

    Consani, K.A. and R.D. Smith, “Observations on the Solubility of Surfactants and Related Molecules in Carbon Dioxide at 50℃,” J. Supercrit. Fluids, 3, 51-65 (1990).

    Debenedetti, P., J.W. Tom, S.D. Yeo and G.B. Lim, “Application of Supercritical Fluids for the Production of Sustained Delivery Devices,” J. Controlled Release, 24, 27-44 (1993).

    Dillow, A.K., F. Dehghani, N. Foster, J. Hrkach and R.S. Langer, “Production of Polymeric Support Materials Using a Supercritical Fluid Anti-solvent Process,” The 4th International Symposium on Supercritical Fluids, 11-14 May, Sendai, Japan, 247-250 (1997).

    Dixon, D.J., K.P. Johnston and R.A. Bodmeier, “Polymeric Materials Formed by Precipitation with a Compressed Fluid Antisolvent,” AIChE Journal, 39, 127-139 (1993).

    Dominogo, C., E. Berends and G.M. Van Rosmalen, “Precipitation of Ultrafine Organic Crystals from the Rapid Expansion of Supercritical Solutions over a Capillary and a Frit Nozzle,” J. Supercrit. Fluids, 10, 39-55 (1997).

    Dong, J.X. and Z.S. Hu, “A Study of the Anti-Wear and Friction-Reducing Properties of the Lubricant Additive, Nanometer Zinc Borate,” Tribology International, 31, 219-223 (1998).

    Everett, D.H., Basic Principles of Colloid Science, The Royal Society of Chemistry, Cambridge (1988).

    Gallagher, P.M., M.P. Coffey, V.J. Krukonis and N. Klasutis, “Gas Anti-Solvent Recrystallization: New Process to Recrystallize Compounds Insoluble in Supercritical Fluids,” In Supercritical Fluid Science and Technology; K.P. Johnston, J.M.L. Penniger (Eds.), ACS Symposium Series 406; American Chemical Society: Washington, DC (1989).

    Gallagher, P.M., M.P. Coffey and V.J. Krukonis, “Gas Anti-Solvent Recrystallization of RDX: Formation of Ultra-fine Particles of a Difficult-to-Comminute Explosive,” J. Supercrit. Fluids, 5, 130-142 (1992).

    Gao, Y., T.K. Mulenda, Y.F. Shi and W.K. Yuan, “Fine Particles Preparation of Red Lake C Pigment by Supercritical Fluid,” J. Supercrit. Fluids, 13, 369-374 (1998).

    Giddings, J.C., M.N. Myers, L. McLaren and R.A. Keller, “High Pressure Gas Chromatography of Nonvolatile Species,” Science, 162, 67-73 (1968).

    Gonzalez, A.V., R. Tufeu and P. Subra, “High-Pressure Vapor-Liquid Equilibrium for Binary Systems Carbon Dioxide + Dimethyl Sulfoxide and Carbon Dioxide + Dichloromethane,” J. Chem. Eng. Data, 47, 492-495 (2002).

    Hanna, M. and P. York, Patent WO 98/36825 (1998).

    Harrison, K., J. Goveas, K.P. Johnston and E.A. O’Rear III, “Water-in-Carbon Dioxide Microemulsions with a Fluorocarbon-Hydrocarbon Hybrid Surfactant, “ Langmuir, 10, 3536-3541 (1994).

    Herbst, W. and K. Hunger, Industrial Organic Pigments: Production, Properties, Applications, VCH, New York (1993).

    Hong, L., J. Guo, Y. Gao and W.K. Yuan, “Precipitation of Microparticulate Organic Powders by a Supercritical Antisolvent Process,” Ind. Eng. Chem. Res., 39, 4882-4887 (2000).

    Hu, Z.S., J.X. Dong and G.X. Chen, “Study on Antiwear and Reducing Friction Additive of Nanometer Ferric Oxide,” Tribology International, 31, 355-360 (1998).

    Hu, Z.S. and J.X. Dong, “Study on Antiwear and Reducing Friction Additive of Nanometer Titanium Borate,” Wear, 216, 87-91 (1998a).

    Hu, Z.S. and J.X. Dong, “Study on Antiwear and Reducing Friction Additive of Nanometer Titanium Oxide,” Wear, 216, 92-96 (1998b).

    Hu, Z.S., J.X. Dong and G.X. Chen, “Preparation of Nanometer Titanium Oxide with n-Butanol Supercritical Drying,” Powder Technology, 101, 205-210 (1999a).

    Hu, Z.S., J.X. Dong, G.X. Chen and F. Lou, “Preparation of Nanometer Copper Borate with Supercritical Carbon Dioxide Drying,” Powder Technology, 102, 171-176 (1999b).

    “Isothermal Properties for Carbon Dioxide,” NIST Chemistry WebBook, NIST Standard Reference Database No. 69 - March, 2003, Release, National Institute of Standard and Technology, USA (http://webbook.nist.gov).

    Jarmer, D.J., C.S. Lengsfeld and T.W. Randolph, “Maniplation of Particle Size Distribution of Poly(L-lactic acid) Nanoparticles with a Jet-Swirl Nozzle during Precipitation with a Compressed Antisolvent,” J. Supercrit. Fluids, 27, 317-336 (2003).

    Jarmer, D.J., C.S. Lengsfeld and T.W. Randolph, “Nucleation and Growth Rates of Poly(L-lactic acid) Microparticles during Precipitation with a Compressed-Fluid Antisolvent,” Langmuir, 20, 7254-7264 (2004).

    Johnston, K.P., G. Luna-Barcenas, D. Dixon and S. Mawson, “Polymeric Materials by Precipitation with a Compressed Fluid Anti-Solvent.” Proceedings of the 3rd International Symposium on Supercritical Fluids, Tome 3; G. Brunner, M. Perrut (Eds.), ISBN 2-905-267-23-8, 17-19 October, Strasbourg, 359-364 (1994).

    Jung, J. and M. Perrut, “Particle Design Using Supercritical Fluids: Literature and Patent Survey,” J. Supercrit. Fluids, 20, 179-219 (2001).

    Kamiwano, M., K. Nishi and Y. Inoue, “Dispersion Method Dispersing Apparatus Using Supercritical State,” U.S. Patent 5,921,478, (1999).

    Krober, H., U. Teipel and H. Krause, “Formation of Submicron Particles by Rapid Expansion of Supercritical Solutions. GVC-Fachausschu β,” Hight Pressure Chemical Engineering, 3-5 March, Karlsruhe (Germany), 247-250 (1999).

    Krober, H., U. Teipel and H. Krause, “Manufacture of Submicron Particles via Expansion of Supercritical Fluids,” Chem. Eng. Technol., 23, 763-765 (2000).

    Krober, H. and U. Teipel, “Materials Processing with Supercritical Antisolvent Precipitation: Process Parameters and Morphology of Tartaric Acid,” J. Supercrit. Fluids, 22, 229-235 (2002).

    Krukonis, V., “Supercritical Fluid Nucleation of Difficult-to-Comminute Solids,” Paper at Annual Meeting, AIChE, San Francisco, November (1984).

    Lengsfeld, C.S., J.P. Delplanque, V.H. Barocas and T.W. Randolph, “Mechanism Governing Microparticle Morphology during Precipitation by a Compressed Antisolvent: Atomization vs Nucleation and Growth,” J. Phys. Chem. B, 104, 2725-2735 (2000).
    Matson, D.W., J.L. Fulton, R.C. Petersen and R.D. Smith, “Rapid Expansion of Supercritical Fluid Solutions: Solute Formation of Powders, Thin Films, and Fibers,” Ind. Eng. Chem. Res., 26, 2298-2306 (1987a).

    Matson, D.W., R.C. Petersen and R.D. Smith, “Productions of Powders and Films from Supercritical Solutions,” J. Material Science, 22, 1919-1928 (1987b).

    Montgomery, D.C., Design and Analysis of Experiments, 3rd., Wiley, New York (1991).

    Muhrer, G., C. Lin and M. Mazzotti, “Modeling the Gas Anti-Solvent Recrystallization Process,” Ind. Eng. Chem. Res., 41, 3566-3579 (2002).

    Mullin, J.W., Crystallization, 4th ed., Butterworth-Heinemann, Oxford (2001).

    Novak, Z., P. Senvar-Bozic, A. Rizner and Z. Knez, “Particles from Gas Saturated Solution - PGSS." I Fluidi Supercritici e Le Loro Applicazioni. E. Reverchon, A. Schiraldi (Eds.), 20-22 June, Ravello, 231–238 (1993).

    Parfitt, G.D., Dispersion of Powders in Liquids, with Special Reference to Pigments, Applied Science Publishers, London (1981).

    Patton, T.C., Paint Flow and Pigment Dispersion, Wiley, New York (1979).

    P´erez de Diego, Y., H.C. Pellikaan, F.E. Wubbolts, G. Borchard, G.J. Witkamp and P.J. Jansens, “Opening New Operating Windows for Polymer and Protein Micronisation Using the PCA Process,” J. Supercrit. Fluids, 36, 216-224 (2006).

    Randolph, A.D. and M.A. Larson, Theory of Particulate Processes, Academic Press, New York (1971).

    Randolph, T.W., A.D. Randolph, M. Mebes and S. Yeung, “Sub-Micrometer-Sized Biodegradable Particles of Poly(L-lactic acid) via the Gas Anti-Solvent Spray Precipitation Process,” Biotechnol. Progress, 9, 429-435 (1993).

    Rantakyla, M., M. Jantti, O. Aaltonen and M. Hurme, “The Effect of Initial Drop Size on Particle Size in the Supercritical Antisolvent Precipitation (SAS) Technique,” J. Supercrit. Fluids, 24, 251-263 (2002).

    Reid, R.C., J.M. Prausnitz and B.E. Poling, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York (1988).

    Reverchon, E., G. Della Porta, A. Di Trolio and S. Pace, “Supercritical Antisolvent Precipitation of Nanoparticles of Superconductor Precursors,” Ind. Eng. Chem. Res., 37, 952-958 (1998).

    Reverchon, E., “Supercritical Antisolvent Precipitation of Micro- and Nano- Particles,” J. Supercrit. Fluids, 15, 1-21 (1999).

    Reverchon, E. and G. Della Porta, “Production of Antibiotic Micro- and Nano-Particles by Supercritical Antisolvent Precipitation,” Powder Technology, 106, 23-29 (1999a).

    Reverchon, E., G. Della Porta, D. Sannino and P. Ciambelli, “Supercritical Antisolvent Precipitation of Nanoparticles of a Zinc Oxide Precursor,” Powder Technology, 102, 127-134 (1999b).

    Reverchon, E., G. Della Porta and M.G. Falivene, “Process Parameters and Morphology in Amoxicillin Micro and Submicro Particles Generation by Supercritical Antisolvent Precipitation,” J. Supercrit. Fluids, 17, 239-248 (2000a).

    Reverchon, E., G. Della Porta, I. De Rosa, P. Subra and D. Letourneur, “Supercritical Antisolvent Micronization of Some Biopolymers,” J. Supercrit. Fluids, 18, 239-245 (2000b).

    Reverchon, E., G. Della Porta and P. Pallado, “Supercritical Antisolvent Precipitation of Salbutamol Microparticles,” Powder Technology, 114, 17-22 (2001).

    Reverchon, E., I. De Marco and G. Della Porta, “Rifampicin Microparticles Production by Supercritical Antisolvent Precipitation,” Int. J. Pharm., 243, 83-91 (2002).

    Reverchon, E., G. Caputo and I. De Marco, “Role of Phase Behavior and Atomization in the Supercritical Antisolvent Precipitation,” Ind. Eng. Chem. Res., 42, 6406-6414 (2003a).

    Reverchon, E., I. De Marco, G. Caputo and G. Della Porta, “Pilot Scale Micronization of Amoxicillin by Supercritical Antisolvent Precipitation,” J. Supercrit. Fluids, 26, 1-7 (2003b).

    Reverchon, E., R. Adami, I. De Macro, C.G. Laudani and A. Spada, “Pigment Red 60 Micronization Using Supercritical Fluids Based Techniques,” J. Supercrit. Fluids, 35, 76-82 (2005).

    Reverchon, E. and R. Adami, “Nanomaterials and Supercritical Fluids,” J. Supercrit. Fluids, 37, 1-22 (2006).

    Schmitt, W.J., M.C. Salada, G.G. Shook and S.M. Speaker III, “Finely-Divided Powders by Carrier Solution Injection into a Near or Supercritical Fluid,” AIChE Journal, 41, 2476-2486 (1995).

    Sievers, R.E. and U. Karst, European Patent 0677322 (1995); US Patent 5639441 (1997).

    Sievers, R.E., B.A. Miles, S.P. Sellers, P.D. Milewski, K.D. Kusek and P.G. Kluetz, “New Process for Manufacture of One-Micron Spherical Drug Particles by CO2-assisted Nebulization of Aqueous Solutions,” Proceedings from Respiratory Drug Delivery IV Conference, Hilton Head, South Carolina, 3-8 May, 417-419 (1998).

    Sievers, R.E., U. Karst, P.D. Milewski, S.P. Sellers, B.A. Miles, J.D. Schaefer, C.R. Stoldt and C.Y. Xu, “Formation of Aqueous Small Droplet Aerosols Assisted by Supercritical Carbon Dioxide,” Aerosol Science and Technology, 30, 3-15 (1999).

    Smith, R.D. and R. Wash, US Patent 4,582,731, April 15, 1986 (Priority 01/09/1983)

    Subra, P. and P. Jestin, “Screening Design of Experiment (DOE) Applied to Supercritical Antisolvent Press,” Ind. Eng. Chem. Res., 39, 4178-4184 (2000).

    Subra, P., C.G. Laudani, A. Vega-Gonzalez and E. Reverchon, “Precipitation and Phase Behavior of Theophylline in Solvent-Supercritical CO2 Mixtures,” J. Supercrit. Fluids, 35, 95-105 (2005).

    Turk, M., “Influence of Thermodynamic Behaviour and Solute Properties on Homogeneous Nucleation in Supercritical Solutions,” J. Supercrit. Fluids, 18, 169-184 (2000).

    Uchida, H., A. Manaka, M. Matsuoka and H. Takiyama, “Growth Phenomena of Single Crystal of Naphthalene in Supercritical Carbon Dioxide,” Crystal Growth & Design, 4, 937-942 (2004).

    Weber, M., L.M. Russel and P.G. Debenedetti, “Mathematical Modeling of Nucleation and Growth of Particles Formed by the Rapid Expansion of a Supercritical Solution under Subsonic Conditions,” J. Supercrit. Fluids, 23, 65-80 (2002).

    Weidner, E., Z. Knez and Z. Novak, “PGSS (Particles from Gas Saturated Solutions) - A New Process for Powder Generation,” Proceedings of the 3rd International Symposium on Supercritical Fluids, Tome 3; G. Brunner, M. Perrut (Eds.), ISBN 2-905-267-23-8, 17-19 October, Strasbourg, 229-234 (1994).

    Weidner, E., R. Steiner and Z. Knez, “Powder Generation from Polyethyleneglycols with Compressible Fluids,” High Pressure Chemical Engineering, P. Rudolf von Rohr, and C. Trepp (Eds.), Elsevier Science (1996).

    Wubbolts, F. E., O.S.L. Bruinsma and G.M. van Rosmalen, “Dry-Spraying of Ascorbic Acid or Acetaminophen Solutions with Supercritical Carbon Dioxide,” J. Crystal Growth, 198/199, 767-772 (1999).

    Yeo, S.-D., G.-B. Lim, P.G. Debenedetti and H. Bernstein, “Formation of Micro Particulate Protein Powders Using a Supercritical Fluid Antisolvent,” Biotech. Bioeng., 41, 341-346 (1993).

    莊榮峰,"以合成法量測超臨界二氧化碳抗溶劑與溶劑混合物之汽液相邊界",碩士論文,國立台灣科技大學化工系 (2005)。

    姚景星,劉睦雄,"直交表實驗計劃法",松崗電腦圖書資料有限公司 (1979)。

    邱泓瑜,unpublished data,國立台灣科技大學化工系 (2005)

    QR CODE