簡易檢索 / 詳目顯示

研究生: 沈文豪
SHEN - WEN HAO
論文名稱: 水性聚胺酯/水溶性幾丁聚醣混摻薄膜血液相容性及物性之研究
The study on mechanical characterization and hemocompatibility of aqueous polyurethane blended with water-soluble chitosan membranes
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 楊銘乾
Ming-Chien Yang
邱維銘
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 81
中文關鍵詞: 水溶性幾丁聚醣水性聚胺酯血液相容性
外文關鍵詞: water-soluble chitosan.aqueous polyurethane
相關次數: 點閱:216下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要是以水溶性幾丁聚醣(Water-Souble Chitosan;簡稱WSC)和水性聚胺酯(Aqueous polyurethane;簡稱WPU),藉由均為水性之WPU及WSC,進行混摻以探討WPU/WSC複合之生醫特性及物性。由於合成陰離子型之水性聚胺酯時引進羧酸基團,使具有良好血液適合性;而水性聚胺酯具有彈性,幾丁聚醣在乾燥狀態則為硬與脆之特性,故藉由水性聚胺酯增加幾丁聚醣的彈性和柔軟度。經實驗證實,隨著WSC含量的增加,抗拉強度隨之提升;而隨著WPU含量的增加,伸長率也隨之提升。並藉由NaOH之調整,以評估WPU/WSC混摻之抗凝血性,實驗顯示血小板附著、蛋白質吸附,隨著WSC含量的增加,會降低血漿中的蛋白質吸附及血小板活性和黏著,並經由活化部分凝血活酶時間實驗得知,APTT會隨著WSC含量增加而呈現線性增加的趨勢,達到抗凝血之效果。


This study investigated the biomedical characteristics and physical properties of a composite material consisting of a mixture of water-soluble chitosan (WSC) and aqueous polyurethane (WPU).
Because synthetic anionic WPU acquires a carboxylic acid group, it is highly compatible with blood. While WPU is flexible, chitosan is hard and brittle when in a dry state. As a consequence, aqueous polyurethane can be used to give flexibility and softness to chitosan. Our experiments verified that increasing WSC content causes the tensile strength of the WSC/WPU mixture to increase. And elongation increases with WPU content. We also varied the amount of NaOH used to assess the anticoagulant properties of the WPU/WSC mixture. Our experimental results showed that platelet adhesion and protein adsorption increased with WSC content. The mixture can therefore reduce plasma protein absorption and platelet activity and adhesion. An activated partial thromboplastin time test (APPT) showed that APTT increases in a linear fashion, exerting an anticoagulant effect, with increasing WSC content.

摘要 ……………………………………………………………………………..………I Abstract……………………………………………………………………………….....II 誌謝……………………………………………………………………………..……….IV 目錄…………………………………………………………………………….….. ……V 圖索引…………………………………………………………………………………...Ⅶ 表索引…………………………………………………………………………….... …..Ⅷ 第1章 緒論 …………………………………………………………………………….1 第2章 文獻回顧…………………………………………………………………...……3 2.1 高分子生醫材料………………………………………...............................3 2.2 幾丁聚醣(chitosan) …………………………………………………….5 2.2.1 幾丁聚醣在生醫材料的應用發展………………………...............6 2.2.2 幾丁聚醣之抗菌機制………..........................................................10 2.3 水溶性幾丁聚醣的發展與製備…………………………………………..12 2.4 水性聚胺酯的發展………………………………………………………..16 2.5 血液相容性………………………………………......................................18 2.6 血液的成分..………………………………………………………………19 2.7 血小板與凝血作用………………………………………………………..22 2.8 蛋白質吸附………………………………………………………………..26 2.9 血液學凝固(Blood coagulation) ………………………………….......28 2.10活化部分凝血活酶時間(APTT) ………………………………….............32 2.11 參考文獻…...…………………………………………………………….33 第3章 水性聚胺脂/水溶性幾丁聚醣混摻薄膜血液相容性及物性之研究………...37 中文摘要……………………………………………………………………….37    英文摘要……………………………………………………………………….38 3.1 前言…...………………………………………………………………….39 3.2 實驗…………………………………........................................................41 3.2.1 水性聚胺酯之合成.……………………………………………...41 3.2.2 樣品製備..………………………………………………………..42 3.2.3 測試................................................................................................43 <1> 應力-應變測試(Stress-strain test).…..……………….43 <2> 接觸角測試(Contact angle measurement)…………………43 <3> 吸水性測試(Water absorption experiment)…………….. 43 <4> 掃瞄式電子顯微鏡(SEM)……………………………………..44 <5> 傅立葉紅外線光譜分析儀(FTIR)……………………………44 <6> 熱重量分析儀(TGA)…………………………………………..45 <7> 動態機械分析儀(DMA)………………………………………..45 <8> 血小板附著評估(Evaluation of platelet adhesion)…45 <9> 蛋白質吸附試驗(Protein adsorption)………………..46 <10> 活化部分凝血活酶時間 (APTT) …………………………..46 3.3結果與討論 ……………………………………………………………….48 3.3.1 材料鑑定 …………………………………………………..48 3.3.2 WPU/WSC 膜之表面特性及力學性質………………………49 3.3.3 WPU/WSC 之分子間作用力…………………………………50 3.3.4 WPU/WSC 之熱性質…………………………………………52 3.3.5血液相容性分析…………………………………………….53 3.4參考文獻 ………………………………………………………………….55 第4章 結論 ……………………………………………………………………59 圖 索 引 圖2.1 生體適合性的分類…………………………………………………………..3 圖2.2 抗菌機制圖 ………………………………………………………………..11 圖2.3 血小板型態轉變……………………………………………………………25 圖2.4 血液的凝固機制……………………………………………………………31 圖3.1 m-TMXDI預聚合法水性聚胺脂流程圖……………………………………..60 圖3.2 WPU之結構式………………………………………………………………..61 圖3.3 WSC之結構式………………………………………………………………..62 圖3.4 CONDITIONING MIXER Mixing Mode………………………………………63 圖3.5 WSC/WPU 之混摻薄膜製備…………………………………………………64 圖3.6 APTT測試流程圖……………………………………………………………65 圖3.7 WPU/WSC混摻薄膜之FTIR…………………………………………………..66 圖3.8 WPU/WSC 混摻薄膜之應力應變曲圖………………………………………67 圖3.9 WPU/WSC 混摻薄膜之應力應變關係圖……………………………………68 圖3.10 WPU之SEM圖………………………………………………………………..69 圖3.11 PUC9010之SEM圖…………………………………………………………..70 圖3.12 PUC8020之SEM圖…………………………………………………………..71 圖3.13 WPU/WSC 混摻薄膜之吸水率……………………………………………..72 圖3.14 WPU/WSC混摻薄膜之DMA圖………………………………………………..73 圖3.15 WPU/WSC混摻薄膜之TGA圖………………………………………………..74 圖3.16 WPU/WSC 混摻薄膜之蛋白質吸附量……………………………………..75 圖3.17 WPU/WSC 混摻薄膜之血小板吸附………………………………………..76 圖3.18 WPU/WSC 混摻薄膜之凝血時間…………………………………………..77 表 索 引 表2.1 人體凝血因子的特性………………………………………………………31 表3.1 WPU/WSC 混摻薄膜之配方表………………………..……………………..78 表3.2 WPU/WSC混摻薄膜之抗拉強度、伸長率…………….……………………79 表3.3 WPU/WSC混摻薄膜之吸水率……………………………………………….80 表3.4 WPU/WSC混摻薄膜之接觸角……………………………………………….81

1.Ota S. Current Status of Irradiated Heat-Shrinkable Tubing in
JapanRadiation Physics Chemistry. 18(1~2):81~87, (1981).
2.Charlesby A. Atomic Radiation and Polymers, Chapter 9, London:Pergamon
Press, 134~158, (1960).
3.Das, N. R., Nayak, N. C., Das, H. K., Mishra S. N. and Singh, B. C., J.
Appl. Polym. Sci., 39,1079(1990).
4.R.A.A. Muzzarelli, R. Tarsi, O. Filippini, E. Giovanetti, G. Biagini,
P.E.Varaldo, Antimicrob. Agents Chemother. 34 (1990) 2019.
5.Y. Wan, H. Wu, D. Wen, Porous-conductive chitosan scaffolds for tissue
engineering, Macromol. Biosci. 4 (2004) 882.
6.F.L. Mi, Synthesis and characterization of a novel chitosan–gelatin
bioconjugate with fluorescence emission, Biomacromolecules 6 (2005)975–987
7.F.L. Mi, Y.B. Wu, S.S. Shyu, J.Y. Shyong, Y.H. Tsai, Control of wound
infections using a bilayer chitosan wound dressing with sustainable
antibiotic delivery, J. Biomed. Mater. Res. 59 (2002) 438.
8.F.L. Mi, S.S. Shyu, Y.M. Lin, Y.B. Wu, Y.H. Tsai, Chitin/PLGA blend
microspheres as a biodegradable drug delivery system: a new delivery system
for protein, Biomaterials 24 (2003) 5023.
9.F.L. Mi, Y.B. Wu, S.S. Shyu, A.C. Chao, J.Y. Lai, C.C. Su, Asymmetric
chitosan membrane prepared by dry/wet phase separation: a new type of wound
dressing for controlled antibacterial release, J. Membr. Sci. 212 (2003) 237.
10.F.L. Mi, H.W. Sung, S.S. Shyu, C.C. Su, C.K. Peng, Synthesis and
characterization of biodegradable TPP/genipin co-crosslinked chitosan
beads, Polymer 44 (2003) 6521.
11.F.L. Mi, Y.C. Tan, H.F. Liang, H.W. Sung, In vivo biocompatibility and
degradability of a novel injectable-chitosan-based implant, Biomaterials 23
(2002) 181.
12.S. Chang, J. Puryear, E. A. Funkhouser, R. J. Newton, J. Cairney, Plant Mol
Biol, 31,693-696(1996).
13.Rao, S. B., Sharma, P., “Use of chitosan as a biomaterial”, J. Biomed.
Mater. Res., 34,21(1997).
14.Klokkevold PR, Vandemark L, Kenney EB, Bernard GW, J
Periodontol ,67, 1170(1996)
15.Muzzarelli RAA, Biagimi G, Bellardini M, Simonelli L, Castaldini C,Fratto
G, Castaldini C, Biomaterials, 14(1), 39(1993)
16.Muzzarelli RAA, Zucchini C, Ilari P, Pugnaloni A, Mattioli BelmonteM,
Biagimi G, Castaldini C, Biomaterials, 14(12), 925(1993)
17.R.Y.M. Huang, R. Pal, G.Y. Moon, N-acetylated chitosan membranes
for the pervaporation dehydration of aqueous ethanol and isopropanol
mixtures through alginate/chitosan two ply composite membranes supported
by poly(vinylidene fluoride) porous membrane, J. Membr. Sci.167 (2000) 275.
18.R. Navarro, J. Guzman, I. Saucedo, J. Revilla, E. Guibal, Recovery of metal
ions by chitosan: sorption mechanisms and influence of metal speciation,
Macromol. Biosci. 3 (2003) 552.
19.H.Y. Kweon, I.C. Um, Y.H. Park, Structural and thermal characteristics of
Antheraea pernyi silk fibroin/chitosan blend film, Polymer 42 (2001)6651.
20.L. Zhao, H. Mitomo, M. Zhai, F. Yoshii, N. Nagasawa, T. Kume, Synthesis of
antibacterial PVA/CM-chitosan blend hydrogels with electron beam
irradiation, Carbohydr. Polym. 53 (2003) 439.
21.T. Koyano, N. Koshizaki, H. Umehara, M. Nagura, N. Minoura, Surface states
of PVA/chitosan blended hydrogels, Polymer 41 (2000) 4461.
22.Y.M. Lee, S.Y. Nam, D.J. Woo, Pervaporation of ionically surface
crosslinked chitosan composite membranes for water–alcohol mixtures,J.
Membr. Sci. 133 (1997) 103.
23.M. Zeng, Z. Fang, C. Xu, Effect of compatibility on the structure of
the microporous membrane prepared by selective dissolution of
chitosan/synthetic polymer blend membrane, J. Membr. Sci. 230 (2004)175.
24.D. Dieterich, Progr. Organic Coating, 9,281 (1981)
25.B.P. Thapliyal, R. Chandral, Polym. Int., 24,7 (1991)
26.Y. Zhu, C. Gao, X. Liu, J. Shen, Surface modification of polycaprolactone
membrane via aminolysis and biomacromolecule immobilization for promoting
cytocompatibility of human endothelial cells, Biomacromolecules 3 (2002)
1312.
27.Y. Zhu, C. Gao, J. Guan, J. Shen, Engineering porous polyurethane scaffolds
by photografting polymerization of methacrylic acid for improved
endothelial cell compatibility, J. Biomed. Mater. Res. Part A 67A (2003)
1367.
28.D.A. Wang, J. Ji, Y.H. Sun, J.C. Shen, L.X. Feng, J.H. Elisseeff, In situ
immobilization of proteins and RGD peptide on polyurethane surfaces via poly
(ethylene oxide) coupling polymers for human endothelial cell growth,
Biomacromolecules 3 (2002) 1286.
29.Miscibility, mechanical characteristic and platelet adhesion of 6-o-
carboxymethylchitosan /polyurethane semi-IPN membranes.
,Journal of Membrane Science, 276 ,68–80,(2006)
30.M. King, Z. Zhang, Biomaterials, 15, 621 (1994).
31.R. Guidoin, M.F. Sigot-Luirard, Biomaterials, 13, 281 (1992).
32.B. Huang, Y. Marios, Biomaterials, 13, 209 (1992).
33.A.Z. Okkema, S.A. Visser, and S.L. Cooper Lee, J. Biomed. Mater.
Res., 25, 1371 (1991).
34.T.G. Grasel, S.L. Cooper, J. Biomed. Mater. Res., 23, 311-338(1989).
35.R.W. Hergenrother, S.L. Cooper, J. Mat. Sci.: Mat. In Med., 3 313(1992).
36.M. Pulat, A. Akdogan, S. O¨ zkan, Microbiological interaction and diffusion
properties of hydrophilic and hydrophobic PU membranes, J. Biomat. Appl. 16
(2002) 293.
37.J.H. Kim, S.C. Kim, PEO-grafting on PU/PS IPNs for enhanced blood
compatibility—effect of pendant length and grafting density, Biomaterials
23 (2002) 2015.

無法下載圖示 全文公開日期 2012/07/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE