簡易檢索 / 詳目顯示

研究生: 鄒智揮
Chi-Hui Tsou
論文名稱: 生物全降解型聚乳酸/樹薯澱粉合膠製備 與性能研究
Investigation and Preparation of biodegradable blends of Poly(lactic acid) and tapioca
指導教授: 顏明雄
Meng-Shung Yen
葉正濤
Jen-Taut Yeh
口試委員: 林清安
none
石天威
none
芮祥鵬
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 135
中文關鍵詞: 生物可分解聚乳酸樹薯澱粉
外文關鍵詞: Poly(lactic acid), biodegradable, tapioca
相關次數: 點閱:259下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

論文摘要
本研究使用樹薯澱粉(Tapioca)作為聚乳酸填充物,在斷面觀測中發現聚乳酸與澱粉的界面間產生相分離,因此造成合膠的抗張性質大幅下降。於此吾人使用4,4-二苯基甲烷二異氰酸酯(MDI)作為界面相容劑,成功的改善了界面間的缺陷。在60wt%樹薯澱粉的含量下,可將抗張強度由17.5 MPa提升至42.6 MPa且與純聚乳酸相近。此外,使用己二酸酯(AE)作為聚乳酸之塑化劑以改善其延展性,結果發現合膠樣品在添加了AE塑化劑後其斷點延伸率由數%增加至數百%。但當添加過量AE塑化劑至聚乳酸/樹薯澱粉/4,4-二苯基甲烷二異氰酸酯合膠時,反而會造成樣品產生過分塑性變形,進而導致其抗張強度的下降。 進一步選定較適化配方合膠進行吹膜製品加工,結果發現其成膜特性優良。 為了解上述這些有趣之合膠特性,本研究進一步對上述各合膠樣品之熱學、紅外線光譜、吸水、生物分解及斷面型態等性質進行一系列之研究分析。


Abstract
In this study, granular Tapioca was thermally blended with PLA as a filler. All blends were prepared using a plasti-corder and characterized with tensile properties, thermal properties, thermal dynamic mechanical properties and fracture microstructure
Scanning electron micrographs show that the phase separation occurred in the fracture surface leading to poor tensile properties. Therefore, Methylenediphenyl diisocyanate (MDI) were used as the interfacial compatibilizer to improve the mechanical properties of PLA/Tapioca blends. It is evident that the addition of MDI can improve the tensile strength from 19.8 MPa to 42.6 MPa for the blend with 60 wt% Tapioca. In addition, since PLA was lack toughness for use, adipate ester (AE) was added as a plasticizer to improve the ductility of PLA. Significant decrease in melting point and glass-transition temperature was observed from differential scanning calorimeter and dynamic mechanical analysis. In so doing, the brittleness was improved and the elongation at break was extended to several hundred percents. Therefore, mixing AE with PLA/Tapioca/MDI blends did exhibit effect of plastification. The results also reveal that excessive plasticizer would cause the plastic deformation and decreased the tensile strength.

目 錄 論文摘要 .I ABSTRACT .II 誌 謝 III 目 錄 IV 圖表索引 VI 第一章 前言 1 第二章 文獻回顧 4 2.1高分子降解 4 2.2生物可分解性高分子 7 2.2.1生物可分解性高分子種類…. 9 2.2.2生物分解性測定規範…. 16 2.3聚乳酸 15 2.3.1聚乳酸之組成與特性 20 2.3.2聚乳酸合成 22 2.4澱粉 24 2.4.1澱粉的基本性質 25 2.4.2塑膠摻合澱粉相關研究…. 29 2.5使用4,4-二苯基甲烷二異氰酸酯作為聚乳酸/澱粉合膠界面相容劑之研究 36 2.6塑化劑…. 37 2.6.1聚乳酸塑化相關研究…. 39 2.6.2泛用於業界之塑化劑 40 第三章 實 驗 43 3.1原料 42 3.2樣品製備 44 3.2.1製備聚乳酸/樹薯澱粉合膠…. 44 3.2.2製備聚乳酸/樹薯澱粉/4,4-二苯基甲烷二異氰酸酯合膠…. 46 3.2.3製備聚乳酸/塑化劑合膠…. 48 3.2.4製備(聚乳酸/樹薯澱粉/4,4-二苯基甲烷二異氰酸酯) /己二酸酯合膠…. 49 3.3抗張性質分析 52 3.4熱學性質分析 53 3.5斷面型態觀測 54 3.6紅外線光譜分析 55 3.7吸水性測試 56 3.8生物分解性測試 57 第四章 結果與討論 58 4.1抗張性質分析 58 4.2熱學性質分析 77 4.3斷面型態分析 91 4.4紅外線光譜分析 97 4.5吸水性質 100 4.6生物分解性分析 103 第五章 結 論…. 111 參考文獻 114 作者簡介 120 圖 表 索 引 一、圖索引 圖2-1 乳酸之立體異構圖 19 圖2-2 聚乳酸之立體異構圖 21 圖2-3 聚乳酸合成圖 23 圖2-4 直鏈澱粉(amylose)分子結構圖 25 圖2-5 支鏈澱粉(amylopectin)分子結構圖 26 圖2-6 MDI結構式 36 圖4.1-1 PLAXTapiocaY合膠系列樣品抗張測試圖.. 63 圖4.1-2 (PLA70Tapioca30) XMY ( ■ )Tensile strength, (PLA70Tapioca30)XMY ( □ )Elongation at break, (PLA50Tapioca50)XMY ( ▲ )Tensile strength, (PLA50Tapioca50) XMY ( △ )Elongation at break合膠系列樣品 之抗張質。........................................................................................68 圖4.1-3 (PLAXTapiocaY)99.5M0.5 ( ■ ) Tensile strength,(PLAXTapiocaY)99.5M0.5 ( □ ) Elongation at break,PLAXTapiocaY ( ▲ ) Tensile strength , 及PLAXTapiocaY ( △ )Elongation at break 合膠系列樣品之抗張性質。 66 圖4.1-4 PLA(■), PLAXAEY(△), PLAXATBCY(○), P LAXTAcY(◇), PLAXDPGDBY(×) 合膠系列樣品之抗張性質。 66 圖4.1-5 圖4.1-5 PLA(▓), [(PLA90Tapioca10)99.5M0.5]XAEY(○), [(PLA80Tapioca20)99.5M0.5]XAEY(○), [(PLA70Tapioca30)99.5M0.5]XAEY(○), [(PLA60Tapioca40)99.5M0.5]XAEY(○)及[(PLA50Tapioca50)99.5M0.5]XAEY(○) 合膠系列樣品之抗張強度。 ………………………………………………………………...……...70 圖4.1-6 PLA(▓), [(PLA90Tapioca10)99.5M0.5]XAEY(○), [(PLA80Tapioca20)99.5M0.5]XAEY(○), [(PLA70Tapioca30)99.5M0.5]XAEY(○), [(PLA60Tapioca40)99.5M0.5]XAEY(○)及[(PLA50Tapioca50)99.5M0.5]XAEY(○) 合膠系列樣品之斷點延伸率。……………………….………………………………...……...71 圖4.2-1 (a) PLA、(b) PLA90Tapioca10、(c) PLA80Tapioca20、(d) PLA70Tapioca30、(e) PLA60Tapioca40、(f) PLA50Tapioca50、(g) PLA40Tapioca60樣品DSC熱學性質分析圖………………………80 圖4.2-2 (a) PLA50Tapioca50、(b) (PLA50Tapioca50)99.75M0.25、(c) (PLA50Tapioca50)99.5M0.5、(d) [(PLA50Tapioca50)99.25M0.75、(e) (PLA50Tapioca50)99M1、(f) (PLA50Tapioca50)98M2樣品之DSC熱學性質分析圖……………………………………………………...…81 圖4.2-3 (a) PLA、(b) (PLA90Tapioca10)99.5M0.5、(c) (PLA80Tapioca20)99.5M0.5、(d) (PLA70Tapioca30)99.5M0.5、(e) (PLA60Tapioca40)99.5M0.5、(f) (PLA50Tapioca50)99.5M0.5、(g) (PLA40Tapioca60)99.5M0.5樣品DSC熱學性質分析圖……………………………………………………….…82 圖4.2-4 (a) PLA、(b) PLA95AE5、(c) PLA90AE10、(d) PLA85AE15、(e) PLA80AE20、(f) PLA75AE25、(g) PLA70AE30樣品DSC熱學性質分析圖……………………………………………………………….…83 圖4.2-5 (a) (PLA90Tapioca10)99.5M0.5、(b) [(PLA90Tapioca10)99.5M0.5]95AE5、(c) [(PLA90Tapioca10)99.5M0.5]90AE10、(d) [(PLA90Tapioca10)99.5M0.5]85AE15、(e) [(PLA90Tapioca10)99.5M0.5]80AE20 (f) [(PLA90Tapioca10)99.5M0.5]75AE25樣品DSC熱學性質分析圖.…84 圖4.2-6 (a) (PLA80Tapioca20)99.5M0.5、(b) [(PLA80Tapioca20)99.5M0.5]95AE5、(c)[(PLA80Tapioca20)99.5M0.5]90AE10、(d) [(PLA80Tapioca20)99.5M0.5]85AE15、(e) [(PLA80Tapioca20)99.5M0.5]80AE20 (f) [(PLA80Tapioca20)99.5M0.5]75AE25樣品DSC熱學性質分析圖…...85 圖4.2-7 (a) (PLA70Tapioca30)99.5M0.5、(b) [(PLA70Tapioca30)99.5M0.5]95AE5、(c) [(PLA70Tapioca30)99.5M0.5]90AE10、(d) [(PLA70Tapioca30)99.5M0.5]85AE15、(e) [(PLA70Tapioca30)99.5M0.5]80AE20 (f) [(PLA70Tapioca30)99.5M0.5]75AE25樣品DSC熱學性質分析圖….86 圖4.2-8 (a) (PLA60Tapioca40)99.5M0.5、(b) [(PLA60Tapioca40)99.5M0.5]95AE5、(c) [(PLA60Tapioca40)99.5M0.5]90AE10、(d) [(PLA60Tapioca40)99.5M0.5]85AE15、(e) [(PLA60Tapioca40)99.5M0.5]80AE20 (f) [(PLA60Tapioca40)99.5M0.5]75AE25樣品DSC熱學性質分析圖….87 圖4.2-9 (a) (PLA50Tapioca50)99.5M0.5、(b) [(PLA50Tapioca50)99.5M0.5]95AE5、(c) [(PLA50Tapioca50)99.5M0.5]90AE、(d) [(PLA50Tapioca50)99.5M0.5]85AE15、(e) [(PLA50Tapioca50)99.5M0.5]80AE20 (f) [(PLA50Tapioca50)99.5M0.5]75AE25樣品DSC熱學性質分析圖 88 圖4.3-1 (a) PLA、(b) Tapioca、(c) PLA90Tapioca10、(d) PLA80Tapioca20、 (e) PLA70Tapioca30、(f) PLA60Tapioca40、(g) PLA50Tapioca50 、(h)PLA400Tapioca60樣品SEM斷面型態。………………………..…93 圖4.3-2 (a) PLA50Tapioca50、(b) (PLA50Tapioca50)99.75M0.25、 (c) (PLA50Tapioca50)99.5M0.5、(d) [(PLA50Tapioca50)99.25M0.75、(e) (PLA50Tapioca50)99M1、(f) (PLA50Tapioca50)98M2樣品SEM斷面型態。………………………………………………………………..…94 圖4.3-3 (a) (PLA90Tapioca10)99.5M0.5、 (b) (PLA80Tapioca20)99.5M0.5、 (c) (PLA70Tapioca30)99.5M0.5、(d) (PLA60Tapioca40)99.5M0.5、 (e) (PLA50Tapioca50)99.5M0.5、(f) (PLA40Tapioca60)99.5M0.5 樣品SEM斷面型態。……..……………………………………..…95 圖4.3-4 (a) (PLA70Tapioca30)99.5M0.5、(b)[(PLA70Tapioca30)99.5M0.5]95AE5、 (c)[(PLA70Tapioca30)99.5M0.5]90AE10、(d)[(PLA70Tapioca30)99.5M0.5]85AE15、 (e) [(PLA70Tapioca30)99.5M0.5]80AE20、(f) [(PLA70Tapioca30)99.5M0.5]75AE25 樣品SEM斷面型態。………………………………………………..…98 圖4.4-1 (a)PLA、(b)Tapioca、(c)PLA/Tapioca、(d) PLA/Tapioca /MDI、(e)MDI之FTIR光譜圖。 圖4.4-2 PLA/Tapioca /MDI合膠之反應機構示意圖……………………..…99 圖4.5-1 PLA(◆) 、(PLAXTapiocaY)99.5M0.5 (▲)與PLAXTapiocaY (■)合膠系列樣品之吸水率。..…………………………………………….…101 圖4.5-2 (PLAXAEY) ( ∙) , [(PLA90Tapioca10)99.5M0.5]XAEY(○), [(PLA80Tapioca20)99.5M0.5]XAEY(○), [(PLA70Tapioca30)99.5M0.5]XAEY (○), [(PLA60Tapioca40)99.5M0.5]XAEY(○), 及[(PLA50Tapioca50)99.5M0.5]XAEY(○) 合膠系列樣品之吸水率。...102 圖4.6-1 PLA ( - ) , PLA90Tapioca10 ( ○ ) , PLA90Tapioca10 ( ○ ), PLA80Tapioca20 ( ○ ), PLA70Tapioca30 ( ○ ), PLA60Tapioca40 ( ○ ) , PLA50Tapioca50 , ( ○ ) PLA40Tapioca60 ( ○ ), (PLA90Tapioca10)99.5M0.5 ( ╳ ), (PLA80Tapioca20)99.5M0.5 ( ╳ ), (PLA70Tapioca30)99.5M0.5 ( ╳ ), (PLA60Tapioca40)99.5M0.5 (╳ ), (PLA50Tapioca50)99.5M0.5 ( ╳ ) (PLA40Tapioca60)99.5M0.5 ( ╳ )合膠系列樣品之酵素分解後重量損失率。..……………………………..……………………………….…106 圖4.6-2 PLA ( ○ ) , PLA95AE5 (○), PLA90AE10 ( ○ ), PLA85AE15 ( ○ ), PLA80AE20 ( ○ )及 PLA75AE25 ( ○ ) 合膠系列樣品在不同時間之酵素分解後重量損失率。……………………………….…107 圖4.6-3 (PLA70Tapioca30)99.5M0.5 ( △ ) , [(PLA70Tapioca30)99.5M0.5]95AE5 ( △ ) , [(PLA70Tapioca30)99.5M0.5]90AE10 ( △ ) , [(PLA70Tapioca30)99.5M0.5]85AE15 ( △ ) , [(PLA70Tapioca30)99.5M0.5]80AE20 ( △ ) , (f)[(PLA70Tapioca30)99.5M0.5]75AE25 ( △ ) 合膠系列樣品在不同時間之酵素分解後重量損失率。…………………………..…….…108 圖4.6-4 (PLA70Tapioca30)99.5M0.5 ( □ ) , [(PLA70Tapioca30)99.5M0.5]95AE5 ( □ ) , [(PLA70Tapioca30)99.5M0.5]90AE10 ( □ ) , [(PLA70Tapioca30)99.5M0.5]85AE15 ( □ ) , [(PLA70Tapioca30)99.5M0.5]80AE20 ( □ ) , (f)[(PLA70Tapioca30)99.5M0.5]75AE25 (□) 合膠系列樣品在不同時間之酵素水解後重量損失率。…………………………..…….……109 圖4.6-5 PLAXAEY ( ○ ) , [(PLA70Tapioca30)99.5M0.5]XAEY (△) , [(PLA50Tapioca50)99.5M0.5]XAEY ( □ ) , 合膠系列樣品在120小時後之酵素水解重量損失率。…………………………..……..………110 二、表索引 表2-1 分解性高分子的分解形式………………………………………...........4 表2-2 各項物質燃燒產生之熱量 7 表2-3 各項物質在自然環境中分解所需年限 7 表2-4 可生物分解性高分子之應用領域……………………………………..8 表2-5 生物分解性高分子種類及商品……………………………………….13 表2-6 各國生物分解性相關測試規範...…………………………..…............18 表2-7 各種榖類中之結晶度、糊化溫度及所含直鏈澱粉百分比………….27 表2-8 學術上應用於PLA塑化劑之結構與特性…..………………………..41 表3-1 基體塑膠與添加物特性………………………………………..……...42 表3-2 PLAXTapiocaY合膠系列樣品摻混比例 44 表3-3 PLA70Tapioca30MX合膠系列樣品摻混比例 46 表3-4 PLA50Tapioca50MX合膠系列樣品摻混比例 ………………..………46 表3-5 不同澱粉含量之(PLAXTapiocaY)99.5M0.5合膠系列樣品摻混比例......47 表3-6 PLAXAEY合膠系列樣品摻混比例 ………………………………...48 表3-7 [ (PLA90Tapioca10)99.5M0.5]XAEY合膠系列樣品摻混比例…….............49 表3-8 [ (PLA80Tapioca20)99.5M0.5]XAEY合膠系列樣品摻混比……….............49 表3-9 [(PLA70Tapioca30)99.5M0.5] XAEY合膠系列樣品摻混比….....................50 表3-10 [(PLA60Tapioca40)99.5M0.5] XAEY 合膠系列樣品摻混比例.................50 表3-11 [(PLA50Tapioca50)99.5M0.5] XAEY合膠系列樣品摻混比例 51 表4.1-1 PLAXTapiocaY 合膠系列樣品之抗張性質 59 表4.1-2 (PLA70Tapioca30)XMY 合膠系列樣品之抗張性質 61 表4.1-3 (PLA50Tapioca50)XMY合膠系列樣品之抗張性質……………….….62 表4.1-4 (PLAXTapiocaY)99.5M0.5 合膠系列樣品之抗張性質 65 表4.1-5 [(PLA90Tapioca10)99.5M0.5]XAEY 合膠系列樣品之抗張性質 72 表4.1-6 [(PLA80Tapioca20)99.5M0.5]XAEY 合膠系列樣品之抗張性質 73 表4.1-7 [(PLA70Tapioca30)99.5M0.5]XAEY合膠系列樣品之抗張性質 74 表4.1-8 [(PLA60Tapioca40)99.5M0.5]XAEY 合膠系列樣品之抗張性質 75 表4.1-9 [(PLA50Tapioca50)99.5M0.5]XAEY合膠系列樣品之抗張性質 76 表4.2-1 [(PLAXTapiocaY)99.5M0.5]AAEB合膠系列樣品之熔融溫度…………89 表4.2-2 [(PLAXTapiocaY)99.5M0.5]AAEB合膠系列樣品之結晶溫度…………90 表4.6-1 (PLAXTapiocaY)99.5M0.5與PLAXTapiocaY 合膠系列樣品在不同時間之酵素水解後重量損失率…………………………………...……105

參考文獻
1. 姜燮堂, 分解性塑膠, 交銀產業調查與技術季刊, 137, 4(2001)
2. G. Scott, Polymers and the environment, Royal Socity of Chem., (1999)
3. 生技時代, Vol. 27, ( 2004 )
4. M. Vert, J. Feijen , A. Albertsson , G. Scott , E. Chiellini ,Biodegradable polymers and plastics, Royal Society of Chemistry, London, 64(1992).
5. A. K. Schneider, U.S. Patent 2703316 (1955).
6. D. Calson, L. Nie, R. Barayan, Dubois , J. Appl. Polym. Sci., 72, 477. (1999).
7. N. A. Higgins, U.S.Patent 2676945 (1954).
8. J .W. Leenslag, University of Groningen, Amsterdam , The Netherlands (1982).
9. A. Gopferrich. , Eur. J. Pham. Biopharm.,42,1(1996).
10. E. Muller, M. Allgower, R. Schneider, H. Willlenegger, Manual of Internal Fixation, Verlag, Berlin (1979).
11. J. Schaztker, M. Tile, The Rationale of Operative Fracture Care, Verlag, Berlin (1987).
12. Griffin, G. J. L., American Chemical Society,15,159 (1974).
13. S. Bhatnagar, Hanna, M. A. Trans ASAE, 38,567 (1995).
14. M. F. Koeing, S. J. Huang, Polymer, 36, 1877 (1995).
15. H. Pranamuda, Y. Tokiwa, H. Tanaka ,J. Environ. Polym. Degrad., 4, 1 (1996).
16. R. Mani, J. Tang, Bhattacharya, M. Macromol Rapid Commun, 19, 283 (1998).
17. Jun Wuk Park,Seungsoon Im, Polym. Eng. Sci., 40, 12 (2000).
18. Hua Wang, Xiuzhi Sun, Paul Seib, J. Appl. Polym. Sci., 82, 1761 (2001)
19. Hua Wang, Xiuzhi Sun, Paul Seib, J. Appl. Polym. Sci., 84, 1257 (2002).
20. Hua Wang, Xiuzhi Sun, Paul Seib, J. Appl. Polym. Sci., 90, 3683 (2003)
21. L. V. Labrecque, R. A. Kumar,V. Dave´, R. A. Gross, S. P. Mccarthy, J. Appl. Polym. Sci., 66, 1507 (1997).
22. Nadia Ljungberg, Bengt Wessle´n, J. Appl. Polym. Sci., 86, 1227 (2002).
23. Nadia Ljungberg,1 Thorbjo¨ rn Andersson, Bengt Wessle´n1, J. Appl. Polym. Sci.,88,3239 (2003)
24. S. O. Ryding, Environmental Management Handbook, Amsterdam, The Netherlands, 5, 55 (1994).
25. D. Brune ,The Global Environment-science Technology and Management, 72, 3,1157 (1997).
26. G. Scott, D. Gilead, Degradable Polymers- Principles Applications, Chapman Hall, London, 217 (1955).
27. Jurgen Loucks, Polymer Degradation ans Stability, 59,245 (1998).
28. A. Steinbuchel, et al., FEMS Microbiol Rev., 217 (1992).
29. G. Felton, F. F. Farley, R. M. Hixon, Cereal Chen.,15 (1938).
30. M. W. Rutenberg, D. B. Solarek, Tapioca : Chemistry and Technology ,Academic Press, New York, 349 (1984).
31. D. B. Solarek, Modified Tapioca : Properties and Uses. Boca Raton, CKC Press, Florida, 97 (1986).
32. J. A. Radley, Tapioca Production Technology, Applied Science Publishers, London, 22 (1976).

33. Cao YL, Vacanti CA, Upton J, et al. Transplantation of chondrocytes utilizing polymer-cell constructs to produce new cartilage in the shape of a human ear. Plast. Reconstr. Surg., 100,297 (1997)
34. Mansbridge J, Liu K, Patch R, et al. Three-dimensional fibroblast culture implant for the treatment of diabetic foot ulcers: metabolic activity and therapeutic range. Tissue Eng., 4,403(1998)
35. R. K. Kulkarni, E. G. Moore, A. F. J. Biomed. Mater.Res. 5:169. (1971)
36. D. K. Gilding ,A. M. Reed, Biodegradadable polymers for use in surgery-Poly(glycolic acid)/poly(lactide acid)homo- and
37. copolymers .2.In vitro degradation. Polymer. 22, 007Ae494. (1981)
38. D.K. Gilding, Biocompat.Clin. Implant Mater., 2:209(1981)
39. ASTM D5210-92 (2000); D5271-93; D5511-94; D5522-94a; D5526-94; D5951-96; D5998-96; D6002-96; D6003-96; D5338-98e1; D6340-98; D6691-01; D6692-01
40. ISODIS14851 (1999); ISODIS14852(1999); ISODIS14855(1999).
41. C. Holten, Lactic acid Weinheim, Verlag Chemie, 221,31 (1971).
42. M. Vert, F. Chabot, J. Leray, P. Christel, Macromol Chem. Phys.Suppl. ,5, 30 (1981).
43. T. Nakamura, S. Hitomi, S. Watanabe, Y. Shimizu, K. Jameshidi, S. H. Hyon, Y. Ikada, J. Biomed Master, 23,1115 (1989).
44. Gabriele Perego, Gian Domenico Cella, Catia Bastiol, J. Appl. Polym. Sci., 59, 37 (1996).
45. Y. Tabata, Y. Lkada, Biomed. Mater. Res.,22, 837 (1989).
46. M. Vert, Biomaterials, 15, 1209 (1994).
47. T. G. Park, Journal of Controlled Release, 30,161 (1994).
48. Raghuvanshi, R. S., International journal of pharmaceutics, 93,1 (1993).
49. Hutmacher, D., The international journal of oral&maxillofacial implants, 11, 667 (1996).
50. S. Hyon, K. Jamshidi, Y. Lkada, Biometerials, 18, 1503 (1997).
51. K. Hiltunen, J. V. Seppala, M. Harkonen, Marcromoleculars, 30,373 (1997).
52. L. V. Labrecque, R. A. Kumar, V. Dave´, R. A. Gross, S. P. Mccarthy, J. Appl. Polym. Sci., 66, 1507 (1997).
53. S. Jacobsen, H. G. Frit, Polym. Eng. Sci., 39, 7 (1999).
54. O. Martin, L. Averous, Polymer, 42,6209 (2001).
55. Nadia Ljungberg, Bengt Wessle´n, J. Appl. Polym. Sci., 86, 1227 (2002).
56. Massimo Baiardo, Giovanna Frisoni, J. Appl. Polym. Sci., 90, 1731 (2003) .
57. Nadia Ljungberg, Bengt Wessle´n , Polymer, 44, 7679 (2003) .
58. W.Banks., C. T. Greenwood , Tapioca and Its Components, Halsted Press ,New York, 1 (1975).
59. H. G. Bader, D. Goritz, J. Appl. Polym. Sci.,46,435 (1994) .
60. J. G. Jeroen Van Soest, C. Remko Benzemer, Dick de Wit, F. G. Johannes Vliegenthart, Industrial Crops and Products, 1 (1996).
61. W. Donovan, C. J. Mapes, Biometerials, 32,190 (1980).
62. G. J. L. Griffin., U. S. Patent, 4021388 (1977).
63. J. L. Jane, W. A Schwabacher, S. N. Ramrattan , U.S.Patent, 5115000 (1992).
64. D. Bikiaris, C. Panayiotou., J. Appl. Polym. Sci., 70, 1503 (1998).
65. R. Chandra, R. Rustgi., Polymer Degradation and Stability, 56, 185, (1997).
66. J. Pallay, P. Kelemen, H. Berghmans, Macromol Mater. Eng., 275, 18 (2000).
67. D. Bikiaris, J. Prinos, C. Panayiotou., Polymer Degradation and Stability, 57, 313 (1997).
68. C. Mercier, Physical and macromolecular modification, 61, 538 (1984).
69. C. Bastioli, A. Rallis, F. Cangialosi, F. P. LaMantia, G. Titomanlio, S. Piccarolo, The Polymer Processing Society, European Regional Meeting Palermo ,Italy, 15 (1991).
70. C. Bastioli ,V. Bellotti, L. Del Giudice ,G. Gilli, Journal of Environmental Polymer Degradation, 1, 3 (1993) .
71. Otey , M. William Doane., Symp. on Degradable Plastics, D.C. ,Washington, 10, 39 (1987).
72. C. Bastioli, V. Bellotti, L. Del Guidice, R. Lombi, PCT Int. Pat,02025 (1995).
73. R.P. Singh, J.K. Pandey,D. Rutot, Ph. Degee, Ph. Dubois, Carbohydrate Research, 338, 1759 (2003)
74. S. Bloembergen, R. Narayan, A. Lathia, U.S. Patent, 5504378 (1993).
75. W. Xu, M. R. Amin, J. Appl. Polym. Sci., 71 , 1851 (1999).
76. L. Averous, L. Moro, P. Dole, C. Fringant, Polymer, 41, 4157 (2000)
77. Dujdao Preechwong, Manisara Peesan, Ratana Rujiravanit, Pitt Supaphol, International Union of Pure and Applied Chemistry,217(2004)
78. Bagley, E. B. Fanta, G. F. Doane, W. M., Gugliemelli, L. A., Russell, U.S. Patent, 4026849 (1977).
79. Bloembergen, Y. Lkada, Polymer Degradation and Stability, 26, 1227 (1994).
80. G. F. Fanta, C. L. Swanso, J. Appl. Polym. Sci., 44, 2037 (1992).
81. Jacobsen, S. Fritz, H. G., Polym. Eng. Sci., 36,2799 (1996).
82. S. H. Kim, I. Chin, J. Yoon, S. H. Kim, J. Jung, Korea Polym. J., 6, 42 (1998).
83. D. Calson, L. Nie, R. Barayan, P. Dubois, J. Appl. Polym. Sci., 72, 477 (1999).
84. Hua Wang, Xiuzhi Sun, Paul Seib, J. Appl. Polym. Sci, 84, 1257 (2002).
85. D. Dieteroch, E. Grigat, Hahn, W. In Polyurethane Handbook, Oertel, G. Ed., Hanser, New York, 7 (1985).
86. Ferrigno, T. H. In Handbook of Fillers for Plastics Katz, H. S., Milewski, J. V., Eds., Van Nostrand Reinhold, New York , 8 (1987).
87. O. Martin , L. Ave´rous, Polymer, 42, 6209 (2001).
88. Chin San Wu, Polymer Degradation and Stability, 80,127 (2003).
89. Chin-San Wu, Hsin-Tzu Liao, J. Appl. Polym. Sci., 86, 1792 (2002).
90. Tianyi Ke, S. Xiuzhi Sun ,J. Appl. Polym. Sci., 88, 2947 (2003).

無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE