簡易檢索 / 詳目顯示

研究生: 陳俊村
Chun-Tsun Chen
論文名稱: 矽灰混凝土配比簡化模式建構與其相應工程性質之研究
Study of the Simplified Mixture Proportioning Model of Silica Fume Concrete and its Relevant Properties
指導教授: 黃兆龍
Chao-Lung Hwang
口試委員: 顏聰
none
陳豪吉
none
蘇南
none
王和源
none
沈得縣
none
楊錦懷
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 430
中文關鍵詞: 矽灰混凝土富勒曲線配比簡化模式資料庫環境狀態
外文關鍵詞: Silica Fume Concrete, Fuller’s Curve, Simplified MixtureProportioning Model, Database, Environmental Conditions
相關次數: 點閱:166下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以建立本土化矽灰混凝土配比技術為目標,利用矽灰之微奈米尺寸特性作為填塞料,並採用飛灰與爐石粉之本土化卜作嵐摻料作為微米孔填塞及取代部分水泥之用;粗、細粒料級配依據規範共建立25種不同粒料級配尺度,利用理想級配曲線(富勒曲線,Fuller’s Curve)之理論式計算各級配混合料之組成比例,同時配合緻密配比設計邏輯推導矽灰混凝土材料計算方程式,並由公式中找出共同函數,建立矽灰混凝土配比簡化模式及其相應資料庫,以提升配比設計之便捷性;本研究配比資料庫組合共計2,750種,涵蓋目前工程性質需求範圍。另外,為了具體掌控矽灰混凝土配比技術資料庫之品質資訊,本研究分別就新拌、硬固、耐久性質作試驗驗證與分析;同時,改變溫度、濕度與風速,模擬5種環境場,探討不同環境狀態對矽灰混凝土之影響,以完整詮釋矽灰混凝土特性。研究結果顯示,理論配比模式以矽灰、飛灰、細粒料與粗粒料四種混合級配材料進行組構,使混合料級配範圍可由毫米級、微米級延伸至奈米級,而且粒料級配架構與混合比例不會改變,可提升混凝土粒料架構緻密性;同時,採用三種卜作嵐材料可降低水泥量與矽灰量,材料成本相對較便宜。在性質驗證上,藉由卜作嵐材料的物理緻密填塞效應與本身化學強化反應,結果顯示理論配比可降低混凝土水化尖峰溫度,早期強度雖略低,但晚期強度成長高,並且有良好的超音波速品質、抗硫酸鹽侵蝕能力與抗滲透性,以及能有效降低塑性收縮裂縫發生。然而,改變環境條件下,理論配比因採用大量的卜作嵐材料與較少的用漿量,在濕度愈低或有風速條件時,水泥與卜作嵐材料無法持續水化與卜作嵐反應,對於抗壓強度、超音波速與抗滲透性等硬固性質影響最大;而提高環境溫度,可提升混凝土早期強度,使塑性裂縫指數降低,但長期強度成長有限。


    The goal of this study is to establish a mixture proportioning technology for localized silica fume concrete. The micrometer and nanometer scale characteristics of silica fume have led to its use as filler. Local pozzolanic admixtures, such as fly ash and slag powder are also used as micro scale pore fillers and partial replacements of cement, respectively. According to standards, 25 various aggregate gradations are established for coarse and fine aggregate grades. Theoretical mixture based on the ideal gradation curve (Fuller’s Curve) is used to calculate the blend ratio of granulate materials. After that the densified mixture design algorithm (DMDA) is applied to determine the proportion of silica fume concrete. Common functions derived from theoretical equations are used to establish a simplified mixture proportioning model for silica fume concrete and a relevant database to enhance the convenience design of the concrete mixture is set up. 2,750 mixture combinations are built up in the mixture database cover the whole range of current required engineering property. Besides, to better control the quality information in the silica fume concrete mixture technology database, validation tests and analyses on properties of new mixture, hardened characteristics and durability are conducted. Additionally, five conditions of ambient field types were simulated through the changes of temperature, humidity and wind speed to investigate the effect that various environmental conditions on the property of silica fume concrete and to fully characterize the performance of silica fume concrete. The results show that constructed theoretical mixture proportioning model with four types of graded materials, i.e., silica fume, fly ash, fine aggregate and coarse aggregates, extends the mixture gradation range from a millimeter/micrometer scale to a nanometer scale without altering the aggregate grading structure and mix proportions that enhances the density of the aggregate structure of concrete. Additionally, using three-phase pozzolanic materials can significantly reduce the amount of cement paste and silica fume, and will reduce the material cost. In property validations, the theoretical mixture proportion can accordingly reduce the peak temperature during concrete hydration due to less cement used. Although early strength is slightly low, the strength definitely will increase in later stages, accompanied with high ultrasonic pulse velocity, sulfate resistance, and impermeability. This also effectively lowers the occurrence of plastic shrinkage cracks. When environmental conditions change, because theoretical gradation uses significant amounts of pozzolanic materials and less paste, the cement and pozzolanic materials cannot sustain reactions under low humidity or wind speed conditions. This has the greatest effect on the hardened properties of compressive strength, ultrasonic pulse velocity, and impermeability. Raising the ambient temperature increases the early strength of concrete and reduces the plastic cracking index but limited long term strength development.

    中文摘要 I 英文摘要 III 誌 謝 V 目 錄 VII 表 目 錄 X 圖 目 錄 XIV 符 號 說 明 XXI 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 3 1-3 研究方法與範圍 4 1-4 研究流程 5 第二章 文獻回顧 7 2-1 矽灰 7 2-1-1 矽灰定義與來源 7 2-1-2 矽灰的物理性質 7 2-1-3 矽灰的化學性質 8 2-2 矽灰混凝土的性質 9 2-2-1 矽灰在混凝土的兩大作用 9 2-2-2 矽灰混凝土的新拌特性 9 2-2-3 矽灰混凝土的力學特性 12 2-2-4 矽灰混凝土的耐久特性 13 2-2-5 矽灰混凝土的體積穩定性 14 2-3 混凝土配比設計 16 2-3-1 粒料堆積理論 16 2-3-2 混凝土配比理論與方法 19 2-3-2 ACI卜作嵐混凝土設計法 21 2-3-3 緻密混凝土設計法 25 2-4 環境因素對混凝土性質影響 28 2-4-1 溫度對混凝土性質的影響 28 2-4-2 濕度對混凝土性質的影響 30 2-4-3 風速對混凝土性質的影響 31 第三章 矽灰混凝土試驗計畫 69 3-1 計畫概要 69 3-2 試驗材料 70 3-2-1 水泥 70 3-2-2 爐石粉 70 3-2-3 飛灰 70 3-2-4 矽灰 70 3-2-4 粗細粒料 70 3-2-5 拌合水 71 3-2-5 強塑劑 71 3-3 矽灰混凝土試驗變數與項目 71 3-3-1 矽灰混凝土試驗變數 71 3-3-2 矽灰混凝土試驗項目 72 3-4 矽灰混凝土配比設計 73 3-4-1 ACI 211.1配比設計法 73 3-4-2 理論配比技術模式 74 3-5 矽灰混凝土試驗方法與設備 75 3-5-1 新拌性試驗 75 3-5-2 硬固性試驗 77 3-5-3 耐久性試驗 77 第四章 矽灰混凝土配比簡化模式建立與分析 89 4-1 混凝土配比計算邏輯推演 89 4-1-1 配比材料組成 89 4-2 矽灰混凝土配比設計簡化模式 97 4-2-1 配比簡化模式與資料庫建立 97 4-2-2 配比簡化資料庫設計流程 99 4-3 配比資料庫與傳統混凝土設計之比較 101 4-3-1 配比架構分析 101 4-3-2 配比成本分析 103 4-4 配比設計應用分析-中鋼預鑄混凝土軌枕 105 4-4-1 工程概述 105 4-4-2 軌枕材料品質 105 4-4-3 軌枕結構品質 106 第五章 矽灰混凝土配比工程性質驗證 197 5-1 新拌性質分析 197 5-1-1 工作性 197 5-1-2 單位重 198 5-1-3 水化溫度 199 5-1-4 塑性收縮 202 5-2 硬固性質分析 203 5-2-1 抗壓強度 203 5-2-2 水泥強度效益 205 5-2-3 超音波速 207 5-3 耐久性質分析 209 5-3-1 硫酸鹽侵蝕 209 5-3-2 吸水率(水分吸收) 212 5-3-3 表面電阻值 213 5-3-4 氯離子電滲 215 第六章 環境因素對矽灰混凝土影響分析 253 6-1 環境對塑性收縮影響分析 253 6-2 環境對抗壓強度影響分析 255 6-3 環境對超音波速影響分析 258 6-4 環境對吸水率影響分析 260 6-5 環境對氯離子電滲影響分析 262 第七章 結論與建議 287 7-1 結論 287 7-2 建議 291 參考文獻 293 附錄(矽灰混凝土配比簡化模式資料庫圖集) 305

    1. 黃兆龍,高性能混凝土理論與實務,詹氏書局,台北(2003)。
    2. 洪紫萍、王貴公,生態材料導論,五南圖書,台北(2004)。
    3. 黃兆龍,卜作嵐混凝土使用手冊,財團法人中興工程顧問社,台北(2007)。
    4. ACI Committee 234, “Guide for the Use of Silica Fume in Concrete” (ACI 234R-96), American Concrete Institute, Detroit (1996).
    5. 宋讃恒,「台灣地區耐磨混凝土工程水工結構實務應用探討」,碩士論文,朝陽科技大學,台中(2011)。
    6. 黃兆龍、陳希舜、潘誠平,「中鋼鐵路道岔預力PC軌枕開發」結案報告,中國鋼鐵股份有限公司(2007)。
    7. 黃兆龍,「高完整性承裝容器製程自動化研究」結案報告,行政院原子能委員會核能研究所(2007)。
    8. ACI Committee 211, “Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete” (ACI 211.1-91), American Concrete Institute, Detroit (1991).
    9. Su, N., Hsu, K. C. and Chai, H. W., “A simple mix design method for self-compacting concrete”, Cement and Concrete Research 31, pp. 1799-1807 (2001).
    10. Simon, M. J., Legergren, E. S. and Snyder, K. A., “Concrete Mixture Optimization Using Statistical mixture Design Methods”, Proceedings of the PCI/ FHWA, International Symposium on High Performance Concrete, New Orleans, Louisiana, October 20-22 (1997).
    11. De Larrard, F. and Sedran, T., “Mixture-proportioning of high-Performance concrete”, Cement and Concrete Research 32, pp. 1699-1704 (2002).
    12. Bhanja, S. and Sengupta, B., “Modified water-cement ratio law for silica fume concretes”, Cement and Concrete Research 33, pp. 447-450 (2003).
    13. Sobolev, Konstantin, “The development of a new method for the proportioning of high-performance concrete mixtures”, Cement and Concrete Composites 26, pp. 901-907 (2004).
    14. Bharatkumar, B. H., Narayanan, R., Raghuprasad, B. K. and Ramachandramurthy, D. S., “Mix proportioning of high performance concrete”, Cement and Concrete Composites 23, pp. 71-80 (2001).
    15. Mehta, P. K. and Paulo Monteiro, J. M., Comcrete- Structure, Properties, and Materials, second edition, Prentice Hall (1993).
    16. Mehta, P. K. and Aitcin, P. C., “Principles Underlying the Pro-duction of High-Performance Concrete”, Cement, Concrete, and Aggregates Journal, ASTM, Vol. 12, No. 2, pp. 70-78 (1990).
    17. 蔡志達、張建智、葉叔通、李隆盛、黃兆龍,「利用粒料裹漿厚度推演混凝土配比設計方法」,建築材料學報,第十二卷,第二期,第 152-157頁(2009)。
    18. ACI Committee 116, “Cement and Concrete Terminology” (ACI 116R-00), American Concrete Institute, Detroit (2000).
    19. Silica Fume User’s Mannual, SFA, FHWA Pubtication#IF-05-016, April 2005.
    20. Young, J. F., Mindess, S., Gray, R. J. and Bentur, A., The Science and Technology of Civil Engineering, Prentice-Hall International Editions, U.S.A. (1999).
    21. 黃兆龍,混凝土性質與行為,詹氏書局,台北,2002。
    22. Malhotra, V. M., Ramachandran, V. S., Feldman, R. F. and Aitcin, P. C., Condensed Silica Fume in Concrete, CRC Press, Florida, pp.221 (1987).
    23. ASTM C1240 “Use of Silica Fume as a Mineral Admixture in Hydraulic-Cement Concrete, Mortar, and Grout”, American Society for Testing Material (2003).
    24. Larbi, J. A. and Bijen, J. M., “Orientation of Portlandite at the Paste-Aggregate Interface and Strength Development of the Paste-Aggregate Bond in Mortars in the Presence of Microsilica,” Ceramic Transactions, Vol. 16, Advances in Cementitious Materials, , pp. 274~285 (1991).
    25. Delage, P. and Aitcin, P. C., “Influence of Condensed Silica Fume on Pore-Size Distribution of Concretes,” Ind. Eng. Chem. Prod. Res. Dev., Vol. 22, No. 2, pp. 286-290 (1983).
    26. Mehta, P. K. and Gjorv, O. E., “Properties of Portland Cement Containing Silica Fume,” Cement and Concrete Research, Vol. 12, No. 5, pp. 587-595 (1982).
    27. Cheng-yi, H., and Feldman, R. F., “Influence of Silica Fume on the Microstructural Development in Cement Mortars,” Cement and Concrete Research, Vol. 15, pp. 285-294 (1985).
    28. Wolsiefer, J., “Ultra High-Strength Field Placeable Concrete with Silica Fume Admixture”, Concrete International, pp. 25-31 (1984).
    29. F. I. P. Condensed Silica Fume in Concrete, Thomas Telford, London, pp.75, (1988).
    30. Nochaiya, Thanongsak, Wongkeo, Watcharapong and Chaipanich, Arnon, “ Utilization of fly ash with silica fume and properties of Portland cement–fly ash–silica fume concrete”, Fuel 89, pp. 768–774 (2010).
    31. Mazloom, M., Ramezanianpour, A. A. and Brooks, J. J., “Effect of silica fume on mechanical properties of high-strength concrete”, Cement & Concrete Composites 26, pp. 347–357 (2004).
    32. Khatri, R. P., Sirivivatnanon, V., “Effect of different supplementary cementitious materials on mechanical properties of high performance concrete”, Cement and Concrete Research 25, pp. 209–220 (1995).
    33. Duval, R. and Kadri, E. H., “Influence of silica fume on the workability and the compressive strength of high-performance concretes”, Cement and Concrete Research 28, pp. 533–547 (1998).
    34. 林炳炎,飛灰、矽灰、高爐爐石用在混凝土中,三民書局,台北,1993。
    35. ACI, Fly Ash, Silica Fume, Slag & Other Mineral By- Products in Concrete, V. M. Malhotra Ed. SP-79, pp. 1182 (1983).
    36. Appa Rao, G., “Investigations on the performance of silica fume-incorporated cement pastes and mortars”, Cement and Concrete Research 33, pp. 1765–1770 (2003).
    37. Güneyisi, E., Gesog˘lu, M., Karaog˘lu, S., Mermerdas, K., “Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes”, Construction and Building Materials 34, pp. 120–130 (2012).
    38. Giner, V. T., Ivorra, S., Baeza, F. J., Zornoza, E. and Ferrer, B., “Silica fume admixture effect on the dynamic properties of concrete”, Construction and Building Materials 25, pp. 3272–3277, 2011.
    39. Yogendran, V., Langan, B. W., Haque, M. N. and Ward, M. A., ACI J. Mater. 84, pp. 124 (1987).
    40. Sautsos, M. N. and Domone, P. L. J., “Strength Development of Low Water-Binder Ratio Mixes Incorporating Mineral Admixtures”, Proceedings of the 3rd International Symposium on the Utilization of High Strength Concrete, Lillehammer, Norway, pp. 945-952 (1993).
    41. Chan, Y. W. and Chu, S. H., “Effect of silica fume on steel fiber bond characteristics in reactive powder concrete”, Cement and Concrete Research 34, 1167–1172 (2004).
    42. Bhanja, S. and Sengupta, B., “Influence of silica fume on the tensile strength of concrete”, Cement and Concrete Research 35, pp. 743–747 (2005).
    43. 吳思賢,「添加矽灰與飛灰對混凝土氯離子傳輸行為影響之研究」,碩士論文,國立台灣海洋大學,基隆(2007)。
    44. Poon, C. S., Kou, S. C. and Lam, L., “Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete”, Construction and Building Materials 20, pp. 858–865(2006).
    45. 許日陽,「矽灰混凝土之孔隙與強度關係」,碩士論文,國立中興大學,台中(2007)。
    46. 王燕洳,「矽灰混凝土抗沖磨性與微結構特性之探討」,碩士論文,國立嘉義大學,嘉義(2007)。
    47. 陳明谷,「含矽灰之高性能混凝土水中磨耗性質研究」,碩士論文,國立台灣大學,台北(1996)。
    48. Dotto, J. M. R., De Abreu, A. G., Dal Molin D. C. C. and Muller I. L., “Influence of silica fume addition on concretes physical properties and on corrosion behaviour of reinforcement bars”, Cement & Concrete Composites 26, pp. 31–39(2004).
    49. Winslow, D. N., Cohen, M. D., Bentz, D. P., Snyder, K. A. and Garboczi, E. J., “Percolation and pore structure in mortars and concrete”, Cement and Concrete Research 24, pp. 25–37(1994).
    50. Scrivener, K. L. and Nemati, K. M., “The percolation of pore space in the cement paste/aggregate interfacial zone of concrete”, Cement and Concrete Research 26, pp. 35–40 (1996).
    51. Al-Amoudi, O. S. B., Maslehuddin, Mohammed and Abiola, T. O., “Effect of type and dosage of silica fume on plastic shrinkage in concrete exposed to hot weather”, Construction and Building Materials 18, pp. 737–743 (2004).
    52. ACI 308, “Standard Practice for Curing Concrete” (ACI 308-92), American Concrete Institute, Detroit (1992).
    53. Paillere, A. M., Buil, M., Serrano, J. J., “Effect of fiber addition on the autogenous shrinkage of silica fume concrete”, ACI Mater. J. 86 (2), pp. 139–144 (1989).
    54. Zhang, M. H., Tam, C. T., Leow, M. P., “Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete”, Cement and Concrete Research 33, pp. 1687-1694 (2003).
    55. Yang, Y., Sato, R. and Kawai, K., “Autogenous shrinkage of high-strength concrete containing silica fume under drying at early ages”, Cement and Concrete Research 35, pp. 449–456 (2005).
    56. Appa Rao, G., “Long-term drying shrinkage of mortar - influence of silica fume and size of fine aggregate”, Cement and Concrete Research 31, pp. 171-175 (2001).
    57. Li, Jianyong and Yao, Yan, “A study on creep and drying shrinkage of high performance concrete”, Cement and Concrete Research 31, pp. 1203–1206 (2001).
    58. 謝素蘭,「應用Fuller 級配曲線高性能混凝土配比模式之研究」,南亞學報,第二十六期,第81-94頁(2006)。
    59. Fuller, W. B., Thompson, J. E., “The Laws of Proportioning Concrete”, Transactions ASCE, Vol. 59, pp 67-143 (1907).
    60. Bolomey, J., “Determination of Compressive Strength of Mortar & Concrete” Schweiaeriche Bauzeitung, pp. 26 (1926).
    61. Feret, R., “Sur la Compactite des Mortiers Hydauliques,” 1892; Soc. d’Ind. Natl, 1897; Le Genie Civil (1936).
    62. Birebent, A., “Etude Sur la Composition et les Prpprietes des Béton Caverneux", Annales de Linstitut Technique du Bitiment et des Travaux.
    63. Faury, J., " Le béton – Influence de ses constituents inertes – Règles à adopter pour sa meilleure composition", sa confection et son transport sur les chantiers. 3rd edn, Dunod, Paris (1944).
    64. Popovics, S., “Analysis of concrete strength vs. water-cement ratio relation-ship”, ACI Materials Journal, Vol.87, No.5, pp. 517-528 (1990).
    65. 許桂銘,混凝土配比設計,高立圖書,台北(2004)。
    66. Edwards, L. N., “Proportioning the Material of Mortars and Concretes by Surface Area of Aggregate”, Proc. ASTM, Vol. 18, Part II, pp. 235-283 (1918).
    67. Abrams, D. A., “Design of Concrete Mixture”, Structural Materials Research Laboratory, Lewis Inst. Bull.1, Chicago (1918).
    68. Talbot, A. N. and Richart, F. E., “The Strength of Concrete: Its Relation to the Cement, Aggregate and Water”, Univ. Illinois Rng. Expt. Sta. Bull. 137, pp.118-129, Illinois (1923).
    69. 顏聰、張朝順,「混凝土配比之經濟化模式」,中國土木水利學刊,第二卷,第三期,第293-300頁(1990)。
    70. ACI Committee 211, “Guide for Setting Proportions for High Strength Concrete with Portland Concrete and Fly Ash”(ACI 211.4R-93), Detroit, 1993.
    71. 葉叔通,「以理想級配曲線估算粒料緻密混和比及飛灰水泥漿包裹厚度評估混凝土性質之探討」,碩士論文,台灣科技大學,台北(2005)。
    72. Mounanga, P., Baroghel-Bouny, V., Loukili A. and Khelidj, A., “Autogenous deformations of cement pastes: Part I. Temperature effects at early age and micro–macro correlations”, Cement and Concrete Research 36, pp.110-122 (2006).
    73. Mirza, W. H., A1-Noury S. I., A1-Bedawi W. H., “Temperature Effect on Strength of Mortars and Concrete Containing Blended Cements”, Cement & Concrete Composites 13, pp. 197-202 (1991).
    74. Tan, K. and Gjorv, O. E., “Performance of concrete under different curing conditions”, Cement and Concrete Research, Vol. 26, No. 3, pp. 355-361 (1996).
    75. Zain M. F. M. and Radin, S. S., “Physical properties of high-performance concrete with admixtures exposed to a medium temperature range 20°C to 50°C”, Cement and Concrete Research 30, pp. 1283-1287 (2000).
    76. Yi, S. T., Moon, Y. H. and Kim, J. K., “Long-term strength prediction of concrete with curing temperature”, Cement and Concrete Research 35, pp. 1961 – 1969 (2005).
    77. Reinhardt, H. W. and Stegmaier, M., “Influence of heat curing on the pore structure and compressive strength of self-compacting concrete (SCC)”, Cement and Concrete Research 36, pp. 879–885 (2006).
    78. Jooss, M., Reinhardt, H. W., “Permeability and diffusivity of concrete as function of temperature”, Cement and Concrete Research 32, pp. 1497–1504 (2002).
    79. Jensen, O. M. and Freiesleben Hansen, P., “Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste”, Cement and Concrete Research 29, pp.567-575 (1999).
    80. Al-Amoudi, O. S. B., Maslehuddin, M., Shameem, M. and Ibrahim, M., “Shrinkage of plain and silica fume cement concrete under hot weather”, Cement & Concrete Composites 29, pp. 690–699 (2007).
    81. Mindess, S. and Young, J. F., Concrete, Prentice-hall, Englewood Cliffs, N.J. (1981).
    82. Ho, D. W. S., Cui, Q. Y. and Ritchie, D. J., “The Influence of Humidity and Curing Time on the Quality of Concrete”, Cement and Concrete Research 19, pp.457-464 (1989).
    83. Granju, J. L. and Maso, J. C., “Hardened Portland Cement Paste, Modelisation of the Microstructure and Evolution Laws of Mechanical Porperties , Elastic Modulus”, Cement and Concrete Research 14, pp.539-545 (1984).
    84. 黃兆龍、沈得縣、方水連,「養護濕度因子對水泥漿體品質之影響」,中國土木水利工程學刊,第五卷,第三期,第277-283頁(1993)。
    85. Alsayed, S. H. and Amjad, M. A., “Effect of curing conditions on strength, porosity, absorptivity, ans shrinkage of concrete in hot and dry climate”, Cement and Concrete Research, Vol. 24, No. 7, pp. 1390-1398 (1994).
    86. 黃兆龍、盧雪卿,「養護時間對混凝土工程性質之影響」,中國土木水利工程學刊,第十一卷,第四期,第757-762頁(1999)。
    87. Ozer, B. and Ozkul, M. H. , “The influence of initial water curing on the strength development of ordinary portland and pozzolanic cement concretes”, Cement and Concrete Research 34, pp. 13-18 (2004).
    88. Atis, C. D., Ozcan, F., Kılıc, A. , Karahan, O., Bilim, C. and Severcan, M. H., “Influence of dryand wet curing conditions on compressive strength of silica fume concrete”, Building and Environment 40, pp. 1678–1683 (2005).
    89. Mannan, M. A., Basri, H. B., Zain, M. F. M. and Islam, M. N., “Effect of curing conditions on the properties of OPS-concrete”, Building and Environment 37, pp. 1167-1171 (2002).
    90. Al-Gahtani, A.S., “Effect of curing methods on the properties of plain and blended cement concretes”, Construction and Building Materials 24, pp. 308–314 (2010).
    91. Almusallam, A. A., “Effect of environmental conditions on the properties of fresh and hardened concrete”, Cement & Concrete Composites 23, pp. 353-361 (2001).
    92. Hwang, C. L. and Hsieh, S. L., “The Effect of Fly Ash/Slag on the Property of Reactive Powder Mortar Designed by Using Fuller’s Ideal Curve and Error Function”, Computers and Concrete, Vol. 4, No. 6, pp. 425-436 (2007).
    93. 黃兆龍、洪盟峰和蔡昌宏,「高性能輕骨料混凝土的電阻及氯離子電滲特性之研究」,建築材料學報,第八卷,第四期,第 341-348頁(2005)。
    94. Bjontegaard, O., Hammer, T.A. and Sellevold, E.J.,“Cracking in HPC before Setting Concrete ”,International Symposium on high-Performance and Reactive Powder oncrete,Vol.1, pp.1-16 (1998).
    95. Thomas, M. D. A., Shehata, M. H., Shashiprakash, S. G., Hopkins, D. S. and Cail, K., “Use of ternary cementitious systems containing silica fume and fly ash in concrete”, Cement and Concrete Research 29, pp. 1207–1214 (1999).
    96. Shehata, M. H., Thomas, M. D. A., “Use of ternary blends containing silica fume and fly ash to suppress expansion due to alkali–silica reaction in concrete”, Cement and Concrete Research 32, pp. 341–349 (2002).
    97. Bagheri, A. R., Zanganeh, H. and Moalemi, M. M., “Mechanical and durability properties of ternary concretes containing silica fume and low reactivity blast furnace slag”, Cement & Concrete Composites 34, pp. 663-670 (2012).
    98. 邱恩宏,「矽灰混凝土早期裂縫問題及防治對策之研究」,碩士論文,台灣科技大學,台北(2007)。
    99. 李慧娟,「黃氏富勒緻密配比設計法應用於聚丙烯纖維混凝土性能研究」,碩士論文,台灣科技大學,台北(2007)。
    100. 吳志偉,「矽質微奈米材料對混凝土工程性質之探討」,碩士論文,台灣科技大學,台北(2008)。
    101. 謝素蘭,「應用Fuller級配曲線探討水泥基質材料之巨微觀性質」,博士論文,台灣科技大學,台北(2008)。
    102. 陳俊村,「黃氏富勒緻密配比設計法於鋼纖維混凝土枕材料設計應用之研究」,碩士論文,台灣科技大學,台北(2006)。
    103. American Railway Engineering Association, “Concrete Ties”, Manual for Railway Engineering (1991).
    104. “Prestressed Concrete Sleeper”, Railway Permanent Way Material Part 14, (As 1085. 14-1990), Standards Association of Australia.
    105. 黃兆龍、蔡宗勳,「水泥型別及漿量對高性能混凝土性質之影響」,中國土木水利工程學刊,第十二卷,第一期,第1-9頁(2000)。
    106. 呂建忠,「高強度矽灰混凝土早齡期之溫度發展」,碩士論文,國立中興大學,台中(2006)。
    107. 顏源毅,「非燒結性透水混凝土鋪面植生特性之研究」,碩士論文,國立台灣科技大學,台北(2008)。
    108. 黃兆龍、沈永年,「高性能混凝土水化作用機理之研究」,土木水利,第二十四卷,第一期,第3-17頁(1997)。
    109. Branch, J., Hannant, D. J. and Mulheron, M., “Factors affecting the plastic shrinkage cracking of high-strength concrete”, Magazine of Concrete Research 54, No. 5, pp. 347-354 (2002).
    110. 詹懿任,「應用音聲辨識技術偵測新拌混凝土在溫度與濕度環境場下劣化行為」,碩士論文,國立台灣科技大學,台北(2011)。
    111. Chung, H. W. and Law, K.S., “Diagnosing in Situ Concrete by Ultrasonic Pulsed Technique”, Concrete International, Vol. 13, No. 10, pp. 42-49 (1983).
    112. 李隆盛、黃兆龍、張大鵬,「由超音波速評估高性能混凝土抗壓強度品質」,中國土木水利工程學刊,第十卷,第三期,第591-594頁(1998)。
    113. 黃兆龍、許桂銘,「超音波速在混凝土內傳遞行為及其應用」,建築學報,第四期,第83-99頁(1991)。
    114. Hannson, I. L. H. and Hasson, C. M., “Electrical Resistivity Measurements of Portland Cement Based Materials,” Cement and Concrete Research 13, pp. 675-683 (1983).
    115. Buenfeld, N. R., Newman, J. B. and Page, C. L., “The Resistivity of Mortar Imersed in Sea-Water”, Cement and Concrete Research 16, pp. 511-524 (1986).
    116. ACI Committee 266, “Use of Fly Ash in Concrete”, ACI Materials Journal, Vol. 84, No.5 (1987).
    117. 王和源、黃兆龍,「飛灰增進混凝土結構耐久性之研究」,防蝕工程,第十三卷,第二期,第55-61頁(1999)。

    QR CODE