簡易檢索 / 詳目顯示

研究生: 陳思瑾
Ssu-Chin Chen
論文名稱: 利用電漿技術與點擊化學方法接枝poly(2-ethyl-2-oxazoline) 於聚甲基丙烯酸甲酯高分子及不鏽鋼基材表面並探討其應用
Plasma induced grafting and click chemistry methods for the immobilization of poly(2-ethyl-2-oxazoline) on the surfaces of polymethyl methacrylate (PMMA) and stainless steel and to study the related applications
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 徐振哲
Cheng-Che Hsu
王勝仕
Sheng-Shin Wang
何明樺
Ming-Hua Ho
劉懷勝
Hwai-Shen Liu
蔡偉博
Wei-Bor Tsai
魏大欽
Ta-Chin Wei
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 105
中文關鍵詞: 電漿誘導接枝法點擊化學中環加成反應法甲基丙烯酸甲酯不鏽鋼
外文關鍵詞: plasma induced grafting, azide-alkyne cycloaddition reaction, poly(2-ethyl-2-oxazoline), polymethyl methacrylate
相關次數: 點閱:231下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要目的以陽離子開環聚合法製備poly(2-ethyl-2-oxazoline) 高分子 (PEOXA),並分別以電漿誘導接枝方法及點擊化學中的環加成反應方法,接枝於甲基丙烯酸甲酯 (poly(methyl methacrylate), PMMA) 及不鏽鋼 (stainless steel, SS) 等兩種基材表面,並測試改質後的PMMA與不鏽鋼的抗細胞貼附的性質。PEOXA高分子合成的部分以傅立葉轉換紅外光光譜儀 (Fourier Transform Infrared Spectroscopy, FTIR) 及液態核磁共振儀 (1H NMR) 進行結構分析,另外,高分子改質於基材表面之結果,以量測水接觸角探討改質前後基材表面親水性質的改變,ATR-FTIR及化學分析電子能原子能譜儀 (Electron spectroscopy for chemical analyzer, ESCA) 分析表面官能基和元素鍵結,並以表面掃描示電子顯微鏡 (Scanning Electron Microscope, SEM) 觀察基材改質前後的表面形態之變化,最後,利用老鼠纖維母細胞 (L929-fibroblast) 進行細胞貼附實驗,驗證抗細胞貼附的效率。本論文將分別就電漿誘導接枝與點擊化學中環加成反應方法兩部分進行討論。
第一部分,是合成末端基為乙烯的PEOXA分子 (PEOXA—C=C),並以電漿誘導接枝法,接枝所合成的高分子於甲基丙烯酸甲酯與不鏽鋼基材表面。本研究合成兩種不同數量平均分子量 (Mn) 的PEOXA—C=C,Mn分別為1790與2603。接枝的方法,則是先利用氬氣電漿預處裡PMMA基材表面,並以旋轉塗佈法塗佈不同濃度的PEOXA—C=C高分子 (0.01- 0.15 M) 於基材上,再以氬氣電漿處理已經過預處理的PMMA基材。另一方面,不鏽鋼基材的預處理是以矽烷化法修飾矽烷有機層於不鏽鋼基材之上,誘導高分子接枝的步驟則是與前述接枝於PMMA基材的方法相同。實驗結果顯示,未改質的PMMA和不鏽鋼基材的靜態水接觸角分別為80°和52.7°,經PEOXA¬C=C修飾後,水接觸角皆為60°。並以ATR-FTIR分析兩種基材表面官能基,可在波數1627 cm-1處發現PEOXA¬C=C的訊號,接枝不同數量平均分子量 1790和2603 PEOXA—C=C於PMMA基材上,抗細胞沾黏的效率可達56 %及65 %,於不鏽鋼基材表面抗細胞沾黏的效率則分別為55 %及60 %。
第二部分,是合成末端基為乙炔的PEOXA分子 (PEOXA¬C≡C),並以點擊化學中的環加成反應法,接枝於不鏽鋼基材表面。將數量平均分子量為1548和4262的 PEOXA¬C≡C的高分子接枝於不鏽鋼基材表面。在不鏽鋼的預處理方面,先以矽烷化法修飾疊氮官能基於不鏽鋼表面,此時靜態水接觸角為92°,由ATR-FTIR分析2106 cm-1波峰為疊氮官能基的訊號,將PEOXA¬C≡C與經由預處理的不鏽鋼基材反應後,以數量平均分子量 (Mn) 為4262的 PEOXA—C≡C與不鏽鋼反應, 當反應量為11 mM時,抗細胞沾黏效率達63 %,以數量平均分子量 (Mn) 為 1548 的PEOXA—C≡C與不鏽鋼反應,當濃度為 64 mM,抗細胞貼附效率達48 %,結果顯示Mn為4262的長鏈高分子,於低濃度反應量時,具有較佳的抗細胞貼附之效果。


In this thesis, poly(2-ethyl-2-oxazoline) (PEOXA) was synthesized by cationic ring opening polymerization. The synthesized PEOXA was further used to be altered with different end functional groups in order to be incorporated on polymethyl methacrylate (PMMA) and stainless steel (SS) surfaces by plasma induced grafting and cycloaddition reaction methods, respectively. The synthesized PEOXA molecules were evaluated by Fourier Transform Infrared Spectroscopy (FTIR) and 1H NMR. The effects of surface modifications on surface of PMMA and stainless steel were characterized by ATR-FTIR, water contact angle (WCA), and Electron Spectroscopy for Chemical Analysis (ESCA). The surface morphology was evaluated by scanning electron microscopy (SEM). The cell adhesion was evaluated by directly cultivating L-929 fibroblasts on the samples.
For the first part of this thesis, PEOXA was altered to possess alkene end groups to form PEOXA¬C=C. Two different number average molecular weight (Mn), 1790 and 2603, of PEOXA-C=C were synthesized and were firstly immobilized on plasma pretreated PMMA and stainless steel, which was followed by Ar plasma induced grafting. The outcome of PEOXA¬C=C grafting was clearly demonstrated by the change of water contact angle from 80° (PMMA) and 52.7° (SS) to 60°, on both substrates. Moreover, the ATR-FTIR results revealed that a C-C-N peak appeared at 1627 cm-1, confirming the incorporation of PEOXA moieties on substrates. The efficiency for resisting cell adhesion of L-929 fibroblasts reached up to 55 % for 0.15 M of PEOXA¬C=C polymer grafted on PMMA and stainless steel surfaces.
For the second part of the thesis, the end groups of PEOXA was altered to be alkyne to form PEOXA¬C≡C. Two different molecular weight of PEOXA¬C≡C, 1548 and 4262, were synthesized. In addition, the azide functional groups were incorporated on stainless steel by silanization approach. Then the two different molecular weight of PEOXA¬C≡C were immobilized on stainless steel with azide groups which were further underdgone the azide-alkyne cycloaddition reactions. The incorporation of PEOXA¬¬—C≡C on stainless steel resulted in change of water contact angle from 52.7° to 60°. Moreover, the functionalities were also verified by ATR-FTIR. The N-C=O and C-N bonds were detected after PEOXA¬¬—C≡C incorporated on stainless steel surfaces according to the results of ESCA analyses. The efficiency of anti-cell adhesion was up to 63 % by using 11 mM of PEOXA¬¬—C≡C with Mn of 4262 on stainless steel surface.

摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究目標 1 1.3 論文總覽 3 第二章 文獻回顧 4 2.1 抗沾黏性質 4 2.1.1 抗沾黏的定義 4 2.1.2 抗沾黏的高分子 5 2.1.3 材料表面改質抗沾黏分子 6 2.2 生醫材料的性質與特性 8 2.2.1 生醫材料的定義 8 2.2.2 高分子材料的特性與應用 9 2.2.3 金屬材料的特性與應用 10 2.3 修飾抗細胞沾黏分子之相關研究 11 2.3.1 電漿誘導接枝方法 11 2.3.2 點擊化學法 12 2.4 poly(2-oxazoline)s高分子之修飾 14 2.4.1 合成poly(2-oxazoline)s高分子之介紹 14 2.4.2 合成不同末端基的poly(2-oxazoline)s高分子 15 2.4.3 poly(2-oxazoline)s高分子的特性 16 2.4.4 修飾poly(2-oxazoline)s高分子於材料表面 16 第三章 實驗儀器與方法 19 3.1 實驗藥品 19 3.2 細胞培養液 20 3.3 Lactate dehydrogenase assay (LDH) 溶液 20 3.4 實驗設備與器材 21 3.4.1 接觸角量測 21 3.4.2 傅立葉轉換紅外光光譜儀 (FTIR) 21 3.4.3 掃描式電子顯微鏡 (SEM) 21 3.4.4 液態核磁共振儀 (1H NMR) 22 3.4.5 減壓濃縮機 22 3.4.6 凝膠滲透層析儀 (Gel permeation chromatography, GPC) 22 3.5 實驗方法 23 3.5.1 製備poly(2-ethyl-2-oxazoline)—C=C高分子 23 3.5.2 製備poly(2-ethyl-2-oxazoline)—C≡C (PEOXA—C≡C) 高分子 24 3.5.3 電漿誘導接枝法 24 3.5.3.1 PMMA基材以氬氣電漿預處理 24 3.5.3.2 旋轉塗佈法固定 (PEOXA—C=C) 高分子於經預處理的 PMMA基材 25 3.5.3.3 PEOXA—C=C高分子以氬氣電漿誘導接枝於PMMA基材 25 3.5.3.4 不鏽鋼表面引入氫氧 (-OH) 官能基 26 3.5.3.5 於不鏽鋼基材表面產生矽氧烷有機層 26 3.5.3.6 以氬氣電漿預處理表面含矽氧烷有機層的不鏽鋼基材 26 3.5.3.7 以氬氣電漿誘導接枝PEOXA—C=C高分子於不鏽鋼基材 26 3.5.4 點擊化學法 27 3.5.4.1 製備 3-azidepropyltrimethoxysilane分子 27 3.5.4.2 改質不鏽鋼基材表面含有疊氮官能基 27 3.5.4.3 點擊化學中環加成反應法固定poly(2-ethyl-2-oxazoline)—C≡C高分子於不鏽鋼基材表面 27 3.6 抗細胞貼附的測試 28 3.6.1 細胞培養 28 3.6.2 繼代培養 29 3.6.3 細胞種植 (cell seeding) 29 3.6.4 Lactate dehydrogenase assay, LDH assay 29 3.6.5 細胞染色方法 30 第四章 結果與討論 31 4.1 利用電漿誘導接枝PEOXA—C=C於PMMA及不鏽鋼基材表面 31 4.1.1 鑑定合成PEOXA—C=C的分子 31 4.1.1.1 合成PEOXA—C=C的分子量鑑定 31 4.1.1.2 以FTIR分析所合成的PEOXA—C=C 32 4.1.1.3 合成的PEOXA—C=C之1H NMR分析 34 4.1.2 氬氣電漿預處理PMMA基材表面參數最適化 35 4.1.2.1 改變氬氣電漿預處理的功率 35 4.1.2.2 改變氬氣電漿預處理的時間 36 4.1.3 利用氬氣電漿誘導接枝PEOXA—C=C於PMMA基材參數最適化 37 4.1.3.1 改變誘導接枝PEOXA—C=C的電漿功率 37 4.1.3.2 改變誘導接枝PEOXA—C=C的電漿處理時間 38 4.1.4 不同濃度的PEOXA—C=C以氬氣電漿誘導接枝於PMMA基材 39 4.1.4.1 PEOXA—C=C接枝於PMMA基材之靜態水接觸角 39 4.1.4.2 PEOXA—C=C接枝於PMMA基材之ATR-FTIR分析 40 4.1.4.3 氬氣電漿誘導接枝PEOXA—C=C於PMMA之ESCA分析 41 4.1.4.4 PEOXA—C=C高分子於 PMMA表面之SEM分析 45 4.1.4.5 PEOXA—C=C於PMMA基材的細胞沾黏測試 46 4.1.4.6 雷射共軛焦顯微鏡觀察細胞貼附於PMMA表面的數量 48 4.1.5 有機層修飾於不鏽鋼表面之水接觸角量測 50 4.1.6 氬氣電漿預處理不鏽鋼表面參數最適化 50 4.1.6.1 改變氬氣電漿預處理時間 50 4.1.7 不同濃度以氬氣電漿誘導接枝於不鏽鋼基材 51 4.1.7.1 電漿誘導接枝PEOXA—C=C於不鏽鋼表面之水接觸角量測 51 4.1.7.2 氬氣電漿誘導接枝PEOXA—C=C於不鏽鋼基材之ATR-FTIR分析 52 4.1.7.3 氬氣電漿誘導接枝PEOXA—C=C於不鏽鋼基材之ESCA分析 54 4.1.7.4 氬氣電漿誘導接PEOXA—C=C於不鏽鋼基材的細胞沾黏測試 58 4.1.7.5 共軛焦顯微鏡觀察細胞貼附於不鏽鋼表面的數量 60 4.2 利用點擊化學中環加成反應法接枝PEOXA—C≡C於不鏽鋼基材表面 62 4.2.1 鑑定合成PEOXA—C≡C分子 62 4.2.1.1 合成PEOXA—C≡C的分子量鑑定 62 4.2.1.2 以FTIR分析所合成的PEOXA—C≡C分子 63 4.2.1.3 合成的PEOXA—C≡C之1H NMR分析 65 4.2.2 製備3-azidepropyltrimethoxysilane分子之FTIR鑑定 65 4.2.3 點擊化學中的環加成反應法接枝PEOXA—C≡C於不鏽鋼基材表面 ................................................................................................................66 4.2.3.1 點擊化學中的環加成反應法接枝不同濃度PEOXA—C≡C分子於不鏽鋼表面之水接觸角量測 66 4.2.3.2 點擊化學中的環加成反應法接枝PEOXA—C≡C於不鏽鋼表面之ATR-FTIR分析 67 4.2.3.3 點擊化學中的環加成反應法接枝PEOXA—C≡C於不鏽鋼表面之ESCA分析 69 4.2.3.4 點擊化學中的環加成反應法接枝PEOXA—C≡C於不鏽鋼表面的細胞沾黏測試 72 4.2.3.5 共軛焦顯微鏡觀察細胞貼於不鏽鋼表面的貼附數量 73 第五章 結論 75 5.1 以電漿誘導接枝PEOXA—C=C高分子於PMMA及不銹鋼基材 75 5.2 以點擊化學中環加成反應法接枝PEOXA—C≡C高分子於PMMA及不銹鋼基材 75 5.3 總結 76 口試委員的建議及問題 77 第六章 參考文獻 85

1.Magin, C. M.; Cooper, S. P.; Brennan, A. B., Non-toxic antifouling strategies. Materials Today 2010, 13 (4), 36-44.
2.Ratner, B. D., The blood compatibility catastrophe. Journal of biomedical materials research 1993, 27 (3), 283-287.
3.Bryers, J. D., Biofilms and the technological implications of microbial cell adhesion. Colloids and Surfaces B: Biointerfaces 1994, 2 (1), 9-23.
4.Veening, J.-W.; Kuipers, O. P.; Brul, S.; Hellingwerf, K. J.; Kort, R., Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis. Journal of bacteriology 2006, 188 (8), 3099-3109.
5.Vogt Jr, R. V.; Phillips, D. L.; Omar Henderson, L.; Whitfield, W.; Spierto, F. W., Quantitative differences among various proteins as blocking agents for ELISA microtiter plates. Journal of Immunological Methods 1987, 101 (1), 43-50.
6.Van Beek, M.; Jones, L.; Sheardown, H., Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials 2008, 29 (7), 780-789.
7.Iwasaki, Y.; Nakabayashi, N.; Nakatani, M.; Mihara, T.; Kurita, K.; Ishihara, K., Competitive adsorption between phospholipid and plasma protein on a phospholipid polymer surface. Journal of Biomaterials Science, Polymer Edition 1999, 10 (5), 513-529.
8.Harris, J. M., Introduction to biotechnical and biomedical applications of poly (ethylene glycol). Springer: 1992.
9.Zhang, Z.; Zhang, M.; Chen, S.; Horbett, T. A.; Ratner, B. D.; Jiang, S., Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 2008, 29 (32), 4285-4291.
10.Fan, X.; Lin, L.; Dalsin, J. L.; Messersmith, P. B., Biomimetic Anchor for Surface-Initiated Polymerization from Metal Substrates. Journal of the American Chemical Society 2005, 127 (45), 15843-15847.
11.Mi, L.; Jiang, S., Synchronizing nonfouling and antimicrobial properties in a zwitterionic hydrogel. Biomaterials 2012, 33 (35), 8928-8933.
12.Ratner, B. D.; Hoffman, A. S., CHAPTER I. 2.10 NON-FOULING SURFACES. Biomaterials Science: An Introduction to Materials in Medicine 2012, 31 (4), 241.
13.Nolan, C. M.; Reyes, C. D.; Debord, J. D.; Garcia, A. J.; Lyon, L. A., Phase transition behavior, protein adsorption, and cell adhesion resistance of poly (ethylene glycol) cross-linked microgel particles. Biomacromolecules 2005, 6 (4), 2032-2039.
14.Li, J.; Tan, D.; Zhang, X.; Tan, H.; Ding, M.; Wan, C.; Fu, Q., Preparation and characterization of nonfouling polymer brushes on poly (ethylene terephthalate) film surfaces. Colloids and Surfaces B: Biointerfaces 2010, 78 (2), 343-350.
15.Hippius, C.; Butun, V.; Erel-Goktepe, I., Bacterial anti-adhesive properties of a monolayer of zwitterionic block copolymer micelles. Materials Science and Engineering: C 2014, 41 (0), 354-362.
16.Freij-Larsson, C.; Jannasch, P.; Wesslen, B., Polyurethane surfaces modified by amphiphilic polymers: effects on protein adsorption. Biomaterials 2000, 21 (3), 307-315.
17.Hench, L. L., Biomaterials: a forecast for the future. Biomaterials 1998, 19 (16), 1419-1423.
18.Williams, D. F., On the mechanisms of biocompatibility. Biomaterials 2008, 29 (20), 2941-2953.
19.Hanawa, T., In vivo metallic biomaterials and surface modification. Materials Science and Engineering: A 1999, 267 (2), 260-266.
20.Billotte, W., Ceramic biomaterials. CRC Press, Boca Raton, FL: 2003.
21.Nair, L. S.; Laurencin, C. T., Biodegradable polymers as biomaterials. Progress in polymer science 2007, 32 (8), 762-798.
22.Tanaka, J.; Kikuchi, M.; Miyamoto, K.; Suwa, S.; Ichikawa, S.; Yokoyama, E.; Shono, S.; Okada, T.; Imamura, Y.; Takakuda, K., Biological materials. Google Patents: 2002.
23.Montdargent, B.; Letourneur, D., Toward new biomaterials. Infection control and hospital epidemiology 2000, 21 (6), 404-410.
24.Bridges, A. W.; Singh, N.; Burns, K. L.; Babensee, J. E.; Andrew Lyon, L.; Garcia, A. J., Reduced acute inflammatory responses to microgel conformal coatings. Biomaterials 2008, 29 (35), 4605-4615.
25.Ishihara, K., Novel polymeric materials for obtaining blood-compatible surfaces. Trends in polymer science 1997, 5 (12), 401-407.
26.Kita, Y.; Kishino, K.; Nakagawa, K., Synthesis of N-cyclohexylmaleimide for heat-resistant transparent methacrylic resin. Journal of Applied Polymer Science 1997, 63 (3), 363-368.
27.Kodjikian, L.; Burillon, C.; Chanloy, C.; Bostvironnois, V.; Pellon, G.; Mari, E.; Freney, J.; Roger, T., In vivo study of bacterial adhesion to five types of intraocular lenses. Investigative ophthalmology & visual science 2002, 43 (12), 3717-3721.
28.Pellier, J.; Geringer, J.; Forest, B., Fretting-corrosion between 316L SS and PMMA: Influence of ionic strength, protein and electrochemical conditions on material wear. Application to orthopaedic implants. Wear 2011, 271 (9), 1563-1571.
29.Khandwekar, A. P.; Patil, D. P.; Shouche, Y. S.; Doble, M., The biocompatibility of sulfobetaine engineered polymethylmethacrylate by surface entrapment technique. Journal of Materials Science: Materials in Medicine 2010, 21 (2), 635-646.
30.Iguerb, O.; Bertrand, P., Graft photopolymerization of polyethylene glycol monoacrylate (PEGA) on poly(methyl methacrylate) (PMMA) films to prevent BSA adsorption. Surface and Interface Analysis 2008, 40 (3-4), 386-390.
31.Reclaru, L.; Lerf, R.; Eschler, P. Y.; Meyer, J. M., Corrosion behavior of a welded stainless-steel orthopedic implant. Biomaterials 2001, 22 (3), 269-279.
32.Albrektsson, T.; Branemark, P.-I.; Hansson, H.-A.; Lindstrom, J., Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthopaedica 1981, 52 (2), 155-170.
33.(a) Teoh, S. H., Fatigue of biomaterials: a review. International Journal of Fatigue 2000, 22 (10), 825-837; (b) Nakayama, Y.; Yamamuro, T.; Kotoura, Y.; Oka, M., In vivo measurement of anodic polarization of orthopaedic implant alloys: comparative study of in vivo and in vitro experiments. Biomaterials 1989, 10 (6), 420-424.
34.Sumita, M.; Hanawa, T.; Teoh, S. H., Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials—review. Materials Science and Engineering: C 2004, 24 (6–8), 753-760.
35.Yasuda, H., Plasma polymerization. Academic press: 1985.
36.Lee, S.-D.; Hsiue, G.-H.; Chang, P. C.-T.; Kao, C.-Y., Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials. Biomaterials 1996, 17 (16), 1599-1608.
37.Ramos Jr, V.; Runyan, D. A.; Christensen, L. C., The effect of plasma-treated polyethylene fiber on the fracture strength of polymethyl methacrylate. The Journal of Prosthetic Dentistry 1996, 76 (1), 94-96.
38.Ulbricht, M.; Belfort, G., Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone. Journal of Membrane Science 1996, 111 (2), 193-215.
39.Zhang, F.; Kang, E. T.; Neoh, K. G.; Wang, P.; Tan, K. L., Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption. Biomaterials 2001, 22 (12), 1541-1548.
40.Wang, P.; Tan, K. L.; Kang, E. T.; Neoh, K. G., Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane. Journal of Membrane Science 2002, 195 (1), 103-114.
41.Zou, X. P.; Kang, E. T.; Neoh, K. G., Plasma-induced graft polymerization of poly(ethylene glycol) methyl ether methacrylate on poly(tetrafluoroethylene) films for reduction in protein adsorption. Surface and Coatings Technology 2002, 149 (2–3), 119-128.
42.Kolb, H. C.; Finn, M.; Sharpless, K. B., Click chemistry: diverse chemical function from a few good reactions. Angewandte Chemie International Edition 2001, 40 (11), 2004-2021.
43.Huisgen, R., 1, 3‐dipolar cycloadditions. Past and future. Angewandte Chemie International Edition in English 1963, 2 (10), 565-598.
44.Zhang, Z.; Feng, X.; Xu, F.; Liu, X.; Liu, B.-F., “Click” chemistry-based surface modification of poly(dimethylsiloxane) for protein separation in a microfluidic chip. Electrophoresis 2010, 31 (18), 3129-3136.
45.Paoprasert, P.; Spalenka, J. W.; Peterson, D. L.; Ruther, R. E.; Hamers, R. J.; Evans, P. G.; Gopalan, P., Grafting of poly (3-hexylthiophene) brushes on oxides using click chemistry. Journal of Materials Chemistry 2010, 20 (13), 2651-2658.
46.Yang, W. J.; Cai, T.; Neoh, K.-G.; Kang, E.-T.; Teo, S. L.-M.; Rittschof, D., Barnacle cement as surface anchor for “clicking” of antifouling and antimicrobial polymer brushes on stainless steel. Biomacromolecules 2013, 14 (6), 2041-2051.
47.Kagiya, T.; Narisawa, S.; Maeda, T.; Fukui, K., Ring-opening polymerization of 2-substituted 2-oxazolines. Journal of Polymer Science Part B: Polymer Letters 1966, 4 (7), 441-445.
48.(a) Guinot, P.; Bryant, L.; Chow, T. Y.; Saegusa, T., Random and block 2-alkyl-2-oxazolines telechelic macromonomers. Macromolecular Chemistry and Physics 1996, 197 (1), 1-17; (b) Miyamoto, M.; Naka, K.; Tokumizu, M.; Saegusa, T., End capping of growing species of poly(2-oxazoline) with carboxylic acid: a novel and convenient route to prepare vinyl- and carboxy-terminated macromonomers. Macromolecules 1989, 22 (4), 1604-1607.
49.Rayeroux, D.; Lapinte, V.; Lacroix-Desmazes, P., One-pot synthesis of amphiphilic diblock copolymers of poly(styrene) and poly(2-methyl-2-oxazoline) by the direct combination of reverse iodine transfer polymerization (RITP) and cationic ring-opening polymerization (CROP) processes. J. Polym. Sci. Pol. Chem. 2012, 50 (22), 4589-4593.
50.Kim, C.; Lee, S. C.; Shin, J. H.; Kwon, I. C.; Jeong, S. Y., Amphiphilic diblock copolymers based on poly(2-ethyl-2-oxazoline) and poly(1,3-trimethylene carbonate): Synthesis and micellar characteristics. Macromolecules 2000, 33 (20), 7448-7452.
51.Trzebicka, B.; Koseva, N.; Mitova, V.; Dworak, A., Organization of poly(2-ethyl-2-oxazoline)-block-poly(2-phenyl-2-oxazoline) copolymers in water solution. Polymer 2010, 51 (12), 2486-2493.
52.Weber, C.; Becer, R. C.; Baumgaertel, A.; Hoogenboom, R.; Schubert, U. S., Preparation of Methacrylate End-Functionalized Poly(2-ethyl-2-oxazoline) Macromonomers. Designed Monomers and Polymers 2009, 12 (2), 149-165.
53.Fijten, M. W. M.; Haensch, C.; van Lankvelt, B. M.; Hoogenboom, R.; Schubert, U. S., Clickable Poly(2-Oxazoline)s as Versatile Building Blocks. Macromolecular Chemistry and Physics 2008, 209 (18), 1887-1895.
54.Adams, N.; Schubert, U. S., Poly(2-oxazolines) in biological and biomedical application contexts. Advanced Drug Delivery Reviews 2007, 59 (15), 1504-1520.
55.Pidhatika, B.; Moller, J.; Benetti, E. M.; Konradi, R.; Rakhmatullina, E.; Muhlebach, A.; Zimmermann, R.; Werner, C.; Vogel, V.; Textor, M., The role of the interplay between polymer architecture and bacterial surface properties on the microbial adhesion to polyoxazoline-based ultrathin films. Biomaterials 2010, 31 (36), 9462-9472.
56.Konradi, R.; Acikgoz, C.; Textor, M., Polyoxazolines for Nonfouling Surface Coatings — A Direct Comparison to the Gold Standard PEG. Macromolecular Rapid Communications 2012, 33 (19), 1663-1676.
57.Wiesbrock, F.; Hoogenboom, R.; Leenen, M. A. M.; Meier, M. A. R.; Schubert, U. S., Investigation of the Living Cationic Ring-Opening Polymerization of 2-Methyl-, 2-Ethyl-, 2-Nonyl-, and 2-Phenyl-2-oxazoline in a Single-Mode Microwave Reactor†. Macromolecules 2005, 38 (12), 5025-5034.
58.Rehfeldt, F.; Tanaka, M.; Pagnoni, L.; Jordan, R., Static and Dynamic Swelling of Grafted Poly(2-alkyl-2-oxazoline)s. Langmuir 2002, 18 (12), 4908-4914.
59.Ueda, J.; Gang, W.; Shirai, K.; Yamauchi, T.; Tsubokawa, N., Cationic Graft Polymerization onto Silica Nanoparticle Surface in a Solvent-Free Dry-System. Polym. Bull. 2008, 60 (5), 617-624.
60.Haensch, C.; Erdmenger, T.; Fijten, M. W. M.; Hoeppener, S.; Schubert, U. S., Fast Surface Modification by Microwave Assisted Click Reactions on Silicon Substrates. Langmuir 2009, 25 (14), 8019-8024.
61.Konradi, R.; Pidhatika, B.; Muhlebach, A.; Textor, M., Poly-2-methyl-2-oxazoline:  A Peptide-like Polymer for Protein-Repellent Surfaces. Langmuir 2008, 24 (3), 613-616.
62.Suzuki, M.; Kishida, A.; Iwata, H.; Ikada, Y., Graft copolymerization of acrylamide onto a polyethylene surface pretreated with glow discharge. Macromolecules 1986, 19 (7), 1804-1808.

無法下載圖示 全文公開日期 2019/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE