簡易檢索 / 詳目顯示

研究生: Andini Nur Vania Swari
Andini - Nur Vania Swari
論文名稱: 羧基處理之鈦酸鍶起始粉末對塊材導電性之研究
Correlation of hydroxyl group treated strontium titanate starting powders and their corresponding to conductivity
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 顏怡文
Yee-Wen Yen
段維新
Wei-Hsing Tuan
陳錦毅
Chin-Yi Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 103
中文關鍵詞: 鈦酸鍶羥基導電度
外文關鍵詞: Strontium titanate (SrTiO3), Hydroxyl (OH) group, Conductivity
相關次數: 點閱:176下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈦酸鍶(SrTiO3)隨(111)平面之含量增加,其導電度亦隨之提升,又以具羥基官能基之添加物所製備之鈦酸鍶所含(111)平面含量最為顯著。本實驗利用噴霧熱裂解法製備鈦酸鍶粉體,藉由添加不同濃度(2.5、5、10、15莫耳比率)之添加物,如乙二醇、甘油、1,2-丙二醇等,進而探討其對粉體所造成不同平面含量之差異。由粉體所製成的生坯於1500℃之燒結溫度持溫1小時後,待溫度降至室溫,完成燒結並得生坯燒結體,即鈦酸鍶塊材。利用X光繞射分析儀(XRD)、傅立葉轉換紅外線光譜儀(FTIR)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)等儀器分別研究粉體與塊材之相鑑定、化學鍵結及粒子表面型態等。另使用阿基米得(Archimedes)浮力原理分析塊材之相對密度,再利用交流與直流阻抗分析儀量測其導電度。由實驗結果得知,含羥基添加物之鈦酸鍶較無添加物者擁有較高的導電度,又以添加乙二醇者所測得的導電度最高,其次分別為甘油與1,2-丙二醇。此外,pH值之高低會影響羥基生成{111}平面族之含量多寡,經由XRD量測結果分別計算(111)與(100)結晶面之強度比值得知,乙二醇為2.88、甘油為2.65及 1,2-丙二醇為2.64。因此,以乙二醇為添加物所製得之鈦酸鍶相較於其他添加物擁有含量較多的{111}平面族。


    Hydroxyl (OH) group that plays important role to increase population of (111) plane was sucessfully applied as additive to enhance the electrical conductivity of strontium titanate (SrTiO3). Different concentrations (2.5, 5, 10, and 15 molar% concentration) of each additive such as ethylene glycol, glycerol, and 1.2 propanediol were investigated. The strontium titanate powders was synthesized by ultrasonic spray pyrolysis. Then sintering process of bulk samples was conducted 1500°C for 1h. Some characterizations for strontium titanate powders and bulks including x-ray diffraction analysis (XRD), fourier transform infrared (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM) have been used to understand the phase change, chemical bonding, and particle morphology. Other analysis for bulk samples including relative density analysis using Archimedes method and AC/DC measurement to measure electrical conductivity of strontium titanate was conducted. The electrical conductivity of strontium titanate was succesfully enhanced by using hydroxyl (OH) group. The conductivity of additive-treated strontium titanate is higher than un-treated strontium titanate. The highest conductivity was generated by EG-treated strontium titanate and followed by glycerol and 1.2 propanediol respectively. Furthermore, the effect of pH value of hydroxyl (OH) group on the mechanism of exposing {111} facet was studied. Based on XRD results, the intensity ratio of (111) peak to (100) generated by ethylene glycol, glycerol, and 1.2 propanediol as additive was calculated of 2.88, 2.65, and 2.64 respetively. It concluded that by using ethylene glycol (EG) as additive, the {111} facet could be exposed more than other additives.

    摘要 I ABSTRACT II ACKNOWLEDGEMENTS III CONTENTS IV LISTS OF TABLES VII LISTS OF FIGURES VIII CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 5 2.1 The solid oxide fuel cell 5 2.1.1 Advantages abd principal work of SOFCs 5 2.1.2 Anode material development 7 2.1.3 Perovskite as anode material 8 2.2 Properties of strontium titanate (SrTiO3) 10 2.2.1 Crystal structure of strontium titanate (SrTiO3) 10 2.2.2 Defect and electrical properties of strontium titanate (SrTiO3) 12 2.3 Grain boundaries of strontium titanate materials 13 2.3.1 General grain boundaries (GBs) 14 2.3.1.1 Surface energy 15 2.3.1.2 General grain boundaries in polycrystalline strontium titanate 15 2.3.2 Coincidence-site lattice grain boundaries (CSL GBs) 16 2.3.2.1 Ʃ3 GBs in polycrystalline strontium titanate 17 2.3.2.2 Surface energy of Ʃ3 GBs in polycrystalline strontium titanate 18 2.4 The hydroxyl (OH) functional group of alcohols 21 2.4.1 The adsorption energy of hydroxyl (OH) group to TiO2 surfaces 21 2.4.2 The importance of hydroxyl (OH) group to SrTiO3 surfaces 22 2.5 Spray pyrolysis strontium titanate powders 24 2.5.1 Spray pyrolysis Equipment 25 2.5.2 Particle formation mechanism by spray pyrolysis 28 CHAPTER 3 EXPERIMENTAL PROCEDURE 30 3.1 Experimental design 30 3.2 Experimental materials and instruments 32 3.3 Materials preparation 35 3.3.1 Synthesize strontium titanate (SrTiO3) powders 35 3.3.2 Fabrication of strontium titanate (SrTiO3) bulk 36 3.4 Materials characterization 37 3.4.1 X-Ray diffractometer (XRD) 37 3.4.2 Field emission scanning electron microscope (FE-SEM) 37 3.4.3 Transmission electron microscope (TEM) 39 3.4.4 Fourier transform infrared spectroscopy (FTIR) 39 3.4.5 Relative density analysis 40 3.4.6 Electron impedance spectroscopy (EIS) 40 CHAPTER 4 RESULTS AND DISCUSSION 43 4.1 Results of strontium titanate powder analysis 43 4.1.1 X-Ray diffractometer (XRD) for powder phase analysis 43 4.1.2 Chemical bonding analysis 49 4.1.3 Results of scanning electron microscope (FE-SEM) for particle morphology analysis 51 4.1.4 Results of transmission electron microscope (TEM) for particle morphology analysis 60 4.2 Results of strontium titanate bulk analysis 65 4.2.1 X-Ray diffractometer (XRD) for bulk analysis 65 4.2.2 Relative density and grain size analysis 67 4.2.3 The electrical properties analysis 69 4.3 Discussion 74 4.3.1 Strontium titanate powders analysis 74 4.3.2 Strontium titanate bulks analysis 76 CHAPTER 5 CONCLUSIONS 80 CHAPTER 6 FUTURE WORK 81 REFERENCES 82

    1. Energy, U.S.D.o. Energy Efficiency and Renewable Energy, "Advanced Combustion Engines.
    2. Smith, B.H., Development of solid oxide fuel cell electrodes with high conductivity and enhanced redox stability, in Chemical engineering. 2010, Bucknell university: Bucknell digital commons. p. 96.
    3. Sun, C. and U. Stimming, Recent anode advances in solid oxide fuel cells. Journal of Power Sources, 2007. 171(2): p. 247-260.
    4. Penwell, W.D., Doped Perovskite Materials for Solid Oxide Fuel Cell (SOFC) Anodes and Electrochemical Oxygen Sensors, in Department of chemistry. 2014, Univeristy of Ottawa
    5. Dokiya, M., SOFC system and technology. Solid State Ionics, 2002. 152–153(0): p. 383-392.
    6. Li, X., et al., Synthesis and properties of Y-doped SrTiO3 as an anode material for SOFCs. Journal of Power Sources, 2007. 166(1): p. 47-52.
    7. Sudireddy, B.R., P. Blennow, and K.A. Nielsen, Microstructural and electrical characterization of Nb-doped SrTiO3–YSZ composites for solid oxide cell electrodes. Solid State Ionics, 2012. 216(0): p. 44-49.
    8. Yu, H.-C., et al., Electrochemical characterization and performance evaluation of intermediate temperature solid oxide fuel cell with La0.75Sr0.25CuO2.5−δ cathode. Journal of Power Sources, 2005. 152(0): p. 22-26.
    9. Huang, X., et al., Performances of planar solid oxide fuel cells with doped strontium titanate as anode materials. Energy Conversion and Management, 2007. 48(5): p. 1678-1682.
    10. Matsuzaki, Y. and I. Yasuda, The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration. Solid State Ionics, 2000. 132(3–4): p. 261-269.
    11. Tao, S. and J.T.S. Irvine, Optimization of Mixed Conducting Properties of Y2O3–ZrO2–TiO2 and Sc2O3–Y2O3–ZrO2–TiO2 Solid Solutions as Potential SOFC Anode Materials. Journal of Solid State Chemistry, 2002. 165(1): p. 12-18.
    12. Ruiz-Morales, J.C., et al., Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature, 2006. 439(7076): p. 568-571.
    13. Bae, C., et al., Abnormal Grain Growth of Niobium-Doped Strontium Titanate Ceramics. Journal of the American Ceramic Society, 1998. 81(11): p. 3005-3009.
    14. Shao, J.S., Nanometre-Scaled Structural Studies of Strontium Titanate by Electron Microscopy and Microanalysis. 2010, University of Oxford. p. 228.
    15. Atkinson, A., et al., Advanced anodes for high-temperature fuel cells. Nat Mater, 2004. 3(1): p. 17-27.
    16. Okazaki, A. and M. Kawaminami, Lattice constant of strontium titanate at low temperatures. Materials Research Bulletin, 1973. 8(5): p. 545-550.
    17. Guan, Y., et al., Quantitative analysis of micro structural and conductivity evolution of Ni-YSZ anodes during thermal cycling based on nano-computed tomography. Journal of Power Sources, 2011. 196(24): p. 10601-10605.
    18. Hui, S.a.A.P., Electrical Properties of Yttrium-Doped Strontium Titanate under Reducing Conditions. Journal of The Electrochemical Society, 2002. 149(1): p. JI-J10.
    19. Chan, N.H., R.K. Sharma, and D.M. Smyth, NONSTOICHIOMETRY IN SrTiO3. Journal of the Electrochemical Society, 1981. 128(8): p. 1762-1769.
    20. Ricoult, M.B., M. Badding, and Y. Thibault, Grain boundary segregation and conductivity in ytria-stabilized zirconia, in 107th Annual meeting, Exposition,and Technology Fair of the American Ceramic Society. 2005, Crystalline Materials Research or Characterization Science: Maryland,USA.
    21. Kienzle, O., M. Exner, and F. Ernst, Atomistic Structure of Σ = 3, (111) Grain Boundaries in Strontium Titanate. physica status solidi (a), 1998. 166(1): p. 57-71.
    22. Sano, T., D.M. Saylor, and G.S. Rohrer, Surface Energy Anisotropy of SrTiO3 at 1400°C in Air. J.Am.Ceram.Soc, 2003. 86(11): p. 1933-1939.
    23. Saylor, D.M., et al., Distribution of grain boundaries in aluminum as a function of five macroscopic parameters. Acta Materialia, 2004. 52(12): p. 3649-3655.
    24. Viswanath, B., et al., Mechanistic Aspects of Shape Selection and Symmetry Breaking during Nanostructure Growth by Wet Chemical Methods†. The Journal of Physical Chemistry C, 2009. 113(39): p. 16866-16883.
    25. Dong, L., et al., Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals. Nano Research, 2014. 7(9): p. 1311-1318.
    26. Wang, L.-Q., et al., Adsorption and Reaction of Methanol on Stoichiometric and Defective SrTiO3(100) Surfaces. The Journal of Physical Chemistry B, 2005. 109(10): p. 4507-4513.
    27. Wang, L.-Q., et al., Adsorption and Reaction of Acetaldehyde on Stoichiometric and Defective SrTiO3(100) Surfaces. The Journal of Physical Chemistry B, 2004. 108(5): p. 1646-1652.
    28. Bates, S.P., G. Kresse, and M.J. Gillan, The adsorption and dissociation of ROH molecules on TiO2(110). Surface Science, 1998. 409(2): p. 336-349.
    29. Kieu, L., P. Boyd, and H. Idriss, Trends within the adsorption energy of alcohols over rutile TiO2(1 1 0) and (0 1 1) clusters. Journal of Molecular Catalysis A: Chemical, 2002. 188(1–2): p. 153-161.
    30. Maxim, F., et al., Solution based approaches for the morphology control of BaTiO3 particulates. Processing and Application of Ceramics, 2010. 4(3): p. 115-125.
    31. Xu, G., et al., Polymer-Assisted Hydrothermal Synthesis of Single-Crystalline Tetragonal Perovskite PbZr0.52Ti0.48O3 Nanowires. Advanced Materials, 2005. 17(7): p. 907-910.
    32. Zana, R., Aqueous surfactant-alcohol systems: A review. Advances in Colloid and Interface Science, 1995. 57(0): p. 1-64.
    33. Zhang, S., et al., Synthesis of single-crystalline perovskite barium titanate nanorods by a combined route based on sol–gel and surfactant-templated methods. Materials Letters, 2008. 62(15): p. 2225-2228.
    34. Yokokawa, H., et al., Fundamental mechanisms limiting solid oxide fuel cell durability. Journal of Power Sources, 2008. 182(2): p. 400-412.
    35. Minh, N.Q., Ceramic Fuel Cells. Journal of the American Ceramic Society, 1993. 76(3): p. 563-588.
    36. Gross, M.D., Development of direct hydrocarbon solid oxide fuel cell with enhanced stability and performance, in Chemical and Biomolecular Engineering. 2007, University of Pennsylvania: United states.
    37. Kolodiazhnyi, T. and A. Petric, The Applicability of Sr-deficient n-type SrTiO3 for SOFC Anodes. Journal of Electroceramics, 2005. 15(1): p. 5-11.
    38. Pudmich, G., et al., Chromite/titanate based perovskites for application as anodes in solid oxide fuel cells. Solid State Ionics, 2000. 135(1–4): p. 433-438.
    39. Singhal, S.C. and K. K, High temperature solid oxide fuel cell: fundamentals, design, and applications. 2003, Oxford, UK: Elsevier Science Ltd
    40. Kingery, W.D., Introduction to ceramics ed. W.s.o.t.s.a.t.o. materials. 1960, New York, London: John Wiley & Sons
    41. Benthem, K.V., Electron microscopic investigations of the bonding behaviour of metals on SrTiO3 substrates, in Chemistry. 2002, Max–Planck–Institut fぴur Metallforschung Stuttgart. p. 213.
    42. Lytle, F.W., X‐Ray Diffractometry of Low‐Temperature Phase Transformations in Strontium Titanate. Journal of Applied Physics, 1964. 35(7): p. 2212-2215.
    43. Saifi, M.A. and L.E. Cross, Dielectric Properties of Strontium Titanate at Low Temperature. Physical Review B, 1970. 2(3): p. 677-684.
    44. Smith, A.G.H., Structural and Defect Properties of Strontium Titanate, in Department of Chemistry. 2011, University College London. p. 269.
    45. Hui, S. and A. Petric, Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells. Journal of the European Ceramic Society, 2002. 22(9–10): p. 1673-1681.
    46. Yang, J.-H., et al., High activation energy for proton migration at tilt grain boundary in barium zirconate. Solid State Ionics, 2013. 252(0): p. 126-131.
    47. Chung, S.-Y., B.-K. Lee, and S.-J.L. Kang, Core-Shell Structure Formation in Nb2O5-Doped SrTiO3 by Oxygen Partial Pressure Change. Journal of the American Ceramic Society, 1998. 81(11): p. 3016-3018.
    48. Fujimoto, M., et al., Microstructure and Electrical Properties of Sodium-Diffused and Potassium-Diffused SrTiO3 Barrier-Layer Capacitors Exhibiting Varistor Behavior. Journal of the American Ceramic Society, 1985. 68(11): p. C-300-C-303.
    49. Smith, D., On the general grain boundary. Interface Science, 1997. 4(1-2): p. 11-27.
    50. Ernst, F., et al., Preferred Grain Orientation Relationships in Sintered Perovskite Ceramics. Journal of the American Ceramic Society, 2001. 84(8): p. 1885-1890.
    51. Rutter, J. and K. Aust, Migration of< 100> tilt grain boundaries in high purity lead. Acta Metallurgica, 1965. 13(3): p. 181-186.
    52. Kronberg, M. and F. Wilson, Secondary recrystallization in copper. AIME TRANS, 1949. 185: p. 501-514.
    53. Shih, S.-J., C. Bishop, and D.J.H. Cockayne, Distribution of Σ3 misorientations in polycrystalline strontium titanate. Journal of the European Ceramic Society, 2009. 29(14): p. 3023-3029.
    54. Chen, C.Y., et al., Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis. Ceramics International, 2008. 34(2): p. 409-416.
    55. Eslamian, M. and N. Ashgriz, Effect of precursor, ambient pressure, and temperature on the morphology, crystallinity, and decomposition of powders prepared by spray pyrolysis and drying. Powder Technology, 2006. 167(3): p. 149-159.
    56. Gaudon, M., E. Djurado, and N.H. Menzler, Morphology and sintering behaviour of yttria stabilised zirconia (8-YSZ) powders synthesised by spray pyrolysis. Ceramics International, 2004. 30(8): p. 2295-2303.
    57. Messing, G.L., S.-C. Zhang, and G.V. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726.
    58. Song, Y.L., et al., Ultrasonic Spray Pyrolysis for Synthesis of Spherical Zirconia Particles. Journal of the American Ceramic Society, 2004. 87(10): p. 1864-1871.
    59. Branković, G., et al., Strontium titanate films prepared by spray pyrolysis. Journal of the European Ceramic Society, 2004. 24(6): p. 989-991.
    60. Kim, K.H., et al., Synthesis of SrTiO3:Pr,Al by ultrasonic spray pyrolysis. Ceramics International, 2002. 28(1): p. 29-36.
    61. Charlesworth, D.H. and W.R. Marshall, Evaporation from drops containing dissolved solids. AIChE Journal, 1960. 6(1): p. 9-23.
    62. Gardner, T.J. and G.L. Messing, Magnesium salt decomposition and morphological development during evaporative decomposition of solutions. Thermochimica Acta, 1984. 78(1–3): p. 17-27.
    63. Gardner, T.J., D.W. Sproson, and G.L. Messing, Precursor Chemistry Effects on Development of Particulate Morphology During Evaporative Decomposition of Solutions. MRS Online Proceedings Library, 1984. 32: p. null-null.
    64. Kodas, T.T. and M.J.H. Smith, The Chemistry of Metal CVD. 1994, USA: VCH.
    65. Shih, S.-J. and I.C. Chien, Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis. Powder Technology, 2013. 237(0): p. 436-441.
    66. Chou, Y.J., Microstructure and bioactivity correlation of one-step synthesized bioactive glass, in Material Science and Enginering. 2013, National Taiwan University of Science and Technology: Taipei.
    67. Clement, C.F. and I.J. Ford, Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts. Atmospheric Environment, 1999. 33(3): p. 489-499.
    68. Shih, S.-J., et al., Nanoscale yttrium distribution in yttrium-doped ceria powder. Journal of Nanoparticle Research, 2009. 11(8): p. 2145-2152.
    69. Shih, S.-J., et al., Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis. Journal of Nanoparticle Research, 2012. 14(5): p. 1-9.
    70. Nonaka, K., et al., Characterization and control of phase segregation in the fine particles of BaTiO3 and SrTiO3 synthesized by the spray pyrolysis method. Journal of Materials Research, 1991. 6(08): p. 1750-1756.
    71. Shih, S.-J. and W.-L. Tzeng, Manipulation of morphology of strontium titanate particles by spray pyrolysis. Powder Technology, 2014. 264(0): p. 291-297.
    72. Shih, S.-J., M.-B. Park, and D.J.H. Cockayne, The interpretation of indexing of high Σ CSL grain boundaries from ceramics. Journal of Microscopy, 2007. 227(3): p. 309-314.
    73. Martin, M.C. and M.L. Mecartney, Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size. Solid State Ionics, 2003. 161(1–2): p. 67-79.
    74. Thompson, A.W., Calculation of true volume grain diameter. Metallography, 1972. 5(4): p. 366-369.
    75. Slotwinski, J.A., E.J. Garboczi, and K.M. Hebenstreit, Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control. Journal of Research of the National Institute of Standards and Technology, 2014. 119.
    76. Instruments, G., Basics of Electrochemical Impedance Spectroscopy. 2007.
    77. Mistry, B., A Handbook of Spectroscopic Data Chemistry: UV, IR, PMR, CNMR and Mass Spectroscopy. 2009: Oxford Book Company.
    78. Vasconcelos, D.C.L., et al., Infrared spectroscopy of titania sol-gel coatings on 316L stainless steel. Materials Sciences and Applications, 2011. 2(10): p. 1375.
    79. Bäurer, M., et al., Grain growth anomaly in strontium titanate. Scripta Materialia, 2009. 61(6): p. 584-587.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE