簡易檢索 / 詳目顯示

研究生: 呂致德
CHIH-TE LU
論文名稱: 添加微量羥基磷灰石及熱處理對生醫可降解鎂鋅釔合金之機械性質與體外降解行為的影響
Effect of low hydroxyapatite content and heat treatment on mechanical properties and in vitro degradation of biodegradable MgZnY alloy.
指導教授: 丘群
Chun Chiu
口試委員: 黃崧任
Song-Jeng Huang
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 87
中文關鍵詞: MgZnY合金羥基磷灰石鎂基複合材料熱處理體外降解機械性質
外文關鍵詞: MgZnY alloy, Hydroxyapatite, Mg-based metal matrix composite, Heat treatment, In vitro degradation, Mechanical properties
相關次數: 點閱:380下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要

本研究使用MgZnY合金 (Mg97Zn1Y2) 添加0.2 wt% 羥基磷灰石製成鎂基複合材料,並經過500℃持溫10小時均質化熱處理,探討材料的微觀組織、機械性質與體外降解行為之變化。
研究解果顯示MgZnY合金組成為α-Mg及Mg12YZn相(LPSO相)。MgZnY合金在添加羥基磷灰石後硬度有些微提升,但在拉伸機械性質部分強度皆不如MgZnY合金;然而,添加羥基磷灰石後之MgZnY合金呈現較佳的耐腐蝕性質,改善了原本MgZnY合金點蝕情形,呈現出均勻腐蝕面貌,且在長時間腐蝕速率由2.93 mm/year下降至1.11 mm/year。
在經過500℃持溫10小時均質化熱處理後,拉伸機械性質相較於鑄後有明顯提升的情形,MgZnY合金抗拉強度由170 MPa提升至175 MPa,伸長量由9%提升至15%。但熱處理過後由於LPSO相的擴展造成伽尼凡腐蝕加劇,使耐腐蝕性質呈現下降趨勢。


Abstract

In this study, a Mg-based metal matrix composite was produced by casting a mixture of Mg97Zn1Y2 and 0.2 wt% of hydroxyapatite, followed by homogenization at 500℃ for 10 hours. The microstructure, mechanical properties and in vitro degradation of the material were investigated.
The results show that MgZnY alloy consisting of α-Mg and Mg12YZn phase. After adding the hydroxyapatite, Vickers microhardness is slightly increased but the tensile mechanical properties are decreased; however, better corrosion resistance properties are observed after the addition of the hydroxyapatite. The corrosion mode changes from the original localized pitting corrosion mode to a more desirable uniform corrosion. The long-time corrosion rate decreases from 2.93 mm/year to 1.11 mm/year.
The tensile mechanical properties of materials after homogenization are better than those after casting. The ultimate tensile strength increases from 170 MPa to 175 MPa and elongation increases from 9% to 15%. However, due to the expansion of the LPSO phase into theα-Mg region, the Galvanic corrosion becomes more severe. As a result, the corrosion properties show a downward trend.

目錄 摘要 II Abstract III 總目錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第二章 文獻回顧 4 2.1 生醫用可降解材料 4 2.2 生醫用可降材料及不可降解材料 4 2.2.1生醫用不可降解材料 5 2.2.1.1生醫用不可降解金屬材料 5 2.2.1.2 生醫用不可降解陶瓷材料 6 2.2.1.3 生醫用不可降解聚合物材料 6 2.2.2 生醫用可降解材料 6 2.2.2.1 生醫用可降解高分子材料 7 2.2.2.1.1 生醫用可降解高分子材料的降解機制 8 2.2.2.2 生醫用可降解陶瓷材料 8 2.2.2.3 生醫用可降解金屬材料(鎂合金) 9 2.3生醫植入型鎂合金 10 2.3.1鎂合金作為植入體優點 10 2.3.1.1鎂合金作為植入體的生物相容性 11 2.3.1.2鎂合金作為植入體的可降解性 11 2.3.1.3鎂合金作為植入體刺激細胞活性 12 2.3.1.4鎂合金作為植入體機械特性 12 2.3.2鎂合金作為植入體的降解機制 13 2.3.3鎂合金作為植入體需要克服的目標 14 2.4鎂及鎂合金特性 15 2.4.1鎂合金符號及標示法 16 2.4.2合金元素添加對鎂的影響 18 2.4.2.1鈣(Ca)元素 18 2.4.2.2鋅(Zn)元素 18 2.4.2.3稀土(RE)元素 19 2.4.3 Mg-Zn-Y合金 19 2.4.3.1長週期疊層(LPSO) 20 2.5羥基磷灰石鎂基複合材料 23 2.6鎂合金熱處理 23 第三章 實驗方法 25 3.1實驗材料 27 3.2熔鑄設備與步驟 28 3.2.1鑄造用熔煉爐 28 3.2.2手動澆鑄設備 29 3.2.3 MgZnY合金與MMC製備 33 3.3 熱處理 34 3.4 拉伸試驗與硬度測試 35 3.4.1動態拉伸試驗機(Material test system, MTS) 35 3.4.2 拉伸試片規劃 36 3.4.3維克式硬度機 38 3.5 體外降解性質測試 39 3.5.1電化學設備 39 3.5.2浸泡試驗 41 3.6 分析儀器 43 3.6.1感應耦合電漿質譜分析儀(ICP) 43 3.6.2 阿基米德天平(密度測定) 44 3.6.3 光學顯微鏡 45 3.6.4 電子顯微鏡(SEM) 46 3.6.5 X-射線繞射分析 47 3.6.7差式掃描分析儀(DTA)及熱分析 48 第四章 結果與討論 49 4.1 合金成分分析 49 4.2 密度測量 50 4.3 熱差分析 (DTA) 50 4.4顯微組織觀察與XRD繞射分析 51 4.4.1 MgZnY與MMC 51 4.4.2 MgZnY與MMC熱處理 56 4.5 機械性質比較 59 4.5.1 維克氏硬度 59 4.5.2 拉伸試驗 62 4.5.2.1 抗拉強度 (UTS) 63 4.5.2.2 降伏強度 (Yield strength) 64 4.5.2.3 伸長率 (Elongation) 65 4.5.2.4破斷面觀察與拉伸結果討論 66 4.6 體外降解性質觀察 71 4.6.1 電化學(塔佛曲線) 71 4.6.2 浸泡試驗 74 第五章 結論 80 參考文獻 82

參考文獻

[1] 邱垂弘、楊智超,"輕金屬特刊-鎂合金成型技術之發展趨勢",工業材料雜誌174期90年6月
[2] 葉圳轍,"輕金屬特刊-鎂合金成型產業現況",工業材料雜誌186期91年6月
[3] 邱垂弘,"鎂合金產業專欄-鎂板的應用及其製造方法",工業材料雜誌 190期 91年10月
[4] Yongjun Chen, Zhigang Xu, Christopher Smith, Jag Sankar., Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater, 2014. 10(11): p. 4561-4573.
[5] Ruben del Campo, B. Savoini, Angel Muñoz, G. Garces, Mechanical properties and corrosion behavior of Mg-HAP composites. J Mech Behav Biomed Mater, 2014. 39: p. 238-246.
[6] Harpreet Brar, Manu O. Platt, Malisa Sarntinoranont, Peter I. Martin, Michele Manuel, Magnesium as a biodegradable and bioabsorbable material for medical implants. The journal of the Minerals, Metals & Materials Society, 2009. 61(9): p. 31-34.
[7] Yoshihito Kawamura Magnesium Research Center (MRC), Kumamoto University, Japan. Flame-resistant magnesium alloys with high strength.
[8] Borhane H. Fellah, Olivier Gauthier, Pierre Weiss, Daniel Chappard, Pierre Layrolle, Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials, 2008. 29(9): p. 1177-1188.
[9] Robert Brosnahan, Laura A. Small, Julie A. Bearcroft., Artificial bone graft implant. US Patent, 2000. No.6149688.
[10] Mankin Henry J, Fogelson Frederick S, Thrasher A. Z, Jaffer F., Massive resection and allograft transplantation in the treatment of malignant bone tumors. New England Journal of Medicine, 1976. 294(23): p. 1247-1255.
[11] João F Mano, Rui A Sousa, Luciano F Boesel, Nuno M Neves, Rui L Reis., Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Composites Science and Technology, 2004. 64(6): p. 789-817.
[12] Sousa Rui A, Reis Rui Luís, Cunha António M, Bevis Michael J., Processing and properties of bone-analogue biodegradable and bioinert polymeric composites. Composites Science and Technology, 2003. 63(3-4): p. 389-402.
[13] Du Yicheng, Wu Tongfei, Yan Ning, Mark T. Kortschot, Ramin Farnood., Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Composites Part B: Engineering, 2014. 56: p. 717-723.
[14] Shanks Robert A, Hodzic Alma, Wong Susan., Thermoplastic biopolyester natural fiber composites. Journal of Applied Polymer Science, 2004. 91(4): p. 2114-2121.
[15] Phillip B. Messersmith, Emmanuel P. Giannelis., Synthesis and barrier properties of poly (epsilon-caprolactone)-layered silicate nanocomposites. Journal of polymer science part a-polymer chemistry, 1995. 33(7): p. 1047-1057.
[16] Hak David., The use of osteoconductive bone graft substitutes in orthopaedic trauma. Journal of the American Academy of Orthopaedic Surgeons Surg, 2007. 15(9): p. 525-536.
[17] Cameron Hugh U, Macnab Ian, Pilliar Robert Mathews., Evaluation of a biodegradable ceramic. Journal of Biomedical Materials Research, 1977. 11(2): p. 179-186.
[18] J.L. Irigaray, H. Oudadesse, E. Jallot, V. Brun, G. Weber, P. Frays- sinet, Materials in clinical applications, World ceramics congress and forum on new materials, 1999. 28:p 399-403.
[19] Frank Witte , Heinz Haferkamp, Elinor Switzer, Meyer Lindenberg, Henning Windhagen., In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005. 26(17): p. 3557-3563.
[20] Jürgen Vormann., Magnesium: nutrition and metabolism. Molecular Aspects of Medicine, 2003. 24(1-3): p. 27-37.
[21] Erinç Müge, Sillekens Wim , Mannens RGTM, Werkhoven Robert., Applicability of existing magnesium alloys as biomedical implant materials. Magnesium Technology, 2009. p. 209-214.
[22] 邱仁志,「AZ80鎂合金管材與棒材之熱擠成形性探討」,碩士論文,國立台灣科技大學,台北, 2007。
[23] Zijian Li, Xunan Gu, Siquan Lou, Yufeng Zheng., The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008. 29(10): p. 1329-1344.
[24] 歐陽春, 雷霆, 王麗, 李年豐, 周樂山, Mg-Zn-Ca三元鎂合金生物材料的腐蝕行為, 中國有色金屬學報 20卷, 2010
[25] Zhang Shaoxiang, Zhang Xiaonong, Zhao Changli, Li Jianan., Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomaterialia, 2010. 6(2): p. 626-640.
[26] Anja C. Hänzi, Isabel Gerber, Michael Schinhammer, Jörg F. Löffler, Peter J. Uggowitzer., On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater. 2010. 6(5): p. 1824-1833.
[27] Akihisa Inoue, Yoshihito Kawamura, Mitsuhide Matsushita, Kentaro Hayashi, Junichi Koike., Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system. Journal of Materials Research, 2001. 16(7): p. 1894-1900.
[28] Jinshan Zhang, Jidong Xu, Weili Cheng, Changjiu Chen, Jingjing Kang, J., Corrosion behavior of Mg–Zn–Y alloy with long-period stacking ordered structures. Journal of Materials Science and Technology, 2012. 28(12): p. 1157–1162.
[29] Yosuke Yamamoto, Yuichi Sakamoto, Yoshihiro Masaki, Shigeto R. Nishitani., First principles calculations of solute ordering in MgZnY alloys. Materials Transactions, 2013. 54(5): p. 656-660.
[30] Matsuura Makoto, Sakurai Masaki, Amika Kenji, Inoue Akihisa. Local structures around Zn and Y in the melt-quenched Mg97ZnlY2 ribbon. Journal of Alloys and Compounds, 2003. 353(1-2): p. 240-245.
[31] Frank Witte , Frank Feyerabend, Petra Maier, Jens Fischer, Michael Störmer, Carsten Blawert., Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials, 2007. 28(13): p. 2163-2174.
[32] Bin Chen, Dongliang Lin, Xiaoqin Zeng, Chen Lu., Effect of solid solution treatment on microstructure and mechanical properties of Mg97Y2Zn1 alloy. Journal of Materials Engineering and Performance, 2012. 22(2): p. 523-527.
[33] 黃建忠,「強化相粒徑對AZ61/SiCp鎂基複合材料鑄錠及擠型材料之機械性質影響的研究」,碩士論文,國立台灣科技大學,台北 (2013).
[34] 陳莘樺,「改善鎂合金及鎂基複合材料AZ61/SiCp鑄錠品質並探討製程對其機械性質的影響」,碩士論文,國立台灣科技大學,台北 (2014).
[35] http://cn.gamry.com/application-notes-3/basics-of-electrochemical-corrosion-measurements/
[36] http://www.nscric.nthu.edu.tw/MS/icpms/icpms.html
[37] Jinshan Zhang, Changjiu Chen, Zhongping Que, Wei Li Cheng, Jidong Xu, Jingjing Kang., 18R and 14H long-period stacking ordered structures in the Mg93.96Zn2Y4Sr0.04 alloy and the modification effect of Sr on X-phase. Materials Science and Engineering A, 2012. 552: p. 81-88.
[38] Bai-shu Wang, Shou-mei Xiong, Yong-bing Liu., Tensile fracture of as-cast and hot rolled Mg-Zn-Y alloy with long-period stacking phase. Transactions of Nonferrous Metals Society of China, 2010. 21: p. 488-492.
[39] Shiying Zhang, Yang Zheng, Liming Zhang, Yanze Bi, Jianye Li, Jiao Liu, Youbin Yu, Heqing Guo, Yan Li., In vitro and in vivo corrosion and histocompatibility of pure Mg and a Mg-6Zn alloy as urinary implants in rat model. Materials Science and Engineering, 2016. 68: p. 414-422.

QR CODE