簡易檢索 / 詳目顯示

研究生: 曾瀞萱
Ching-Hsuan Tseng
論文名稱: 全光纖式之被動 Q 開關鉺鐿共摻光纖雷射: 設計與實現
Design and Implementation of All-Fiber based Passively Q-Switched Er/Yb Co-doped Fiber Laser
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 黃振發
Jen-Fa Huang
游易霖
Yi-Lin Yu
陳南光
Nan-Kuang Chen
戴伯澤
Po-Tse Tai
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: 鉺鐿共摻光纖光纖雷射被動Q開關飽和吸收體
外文關鍵詞: Er-Yb co-doped fiber, Fiber laser, Passively Q-switched, Saturable absorber
相關次數: 點閱:395下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究被動式Q開關鉺鐿共摻光纖雷射,使用環型和線型兩種共振腔架構的光纖雷射,在脈衝產生的機制上使用被動式Q開關。
實驗中將使用鉺鐿共摻光纖做為增益介質及飽和吸收體,並改變不同長度的鉺鐿共摻光纖、不同反射率的光纖光柵,對雷射特性進行量測。也觀察泵激光源功率對脈衝寬度、重複率、平均輸出功率等特性的影響。另外,加入模場轉換元件來改善架構,使雙纖殼結構的鉺鐿共摻光纖能與單模光纖元件互相匹配,以減少損耗,雷射特性可以得到大幅改善。
實驗結果顯示,在泵激功率低時,於環型及線型雷射中都能觀察到鉺鐿共摻光纖的自調Q開關現象。另外,當使用的飽和吸收體長度較長時,脈衝重複率及平均輸出功率皆會降低,而將泵激光源功率提高時,脈衝重複率會隨之提高,此時,若使用長度較短的飽和吸收體,有可能無法產生Q開關現象,雷射輸出將回到連續波模式。最後,使用環型架構,可以獲得脈衝重複率、脈衝寬度及尖峰功率分別為61.73 kHz、2.60 μs及1.58 kW的輸出;使用線型架構,可以獲得脈衝重複率、脈衝寬度及尖峰功率分別為65.79 kHz、2.21 μs及2.48 kW的輸出。


In the thesis, the passively Q-switched Er-Yb co-dopoed fiber laser, both in ring cavity and linear cavity configurations, were designed and implemented.
The laser system was configured by using Er-Yb co-doped fiber as gain medium as well as saturable absorber. Several experiments were demonstrated by varying the parameters of fiber components inside the fiber lasers. The parameters to be adjusted including Er-Yb codoped fiber length and FBG reflectivity. The impacts of pumping power to pulse width, repetition rate and average laser output power were also investigated. We also inserted a mode filed adaptor in between the Er-Yb co-dopoed fiber laser and single mode fiber to reduce the modes convert loss and enhance the laser characteristics.
The experimental results indicated that at low pumping power, both ring and linear cavities fiber lasers have self-Q-switched pulse output. Also, the pulse repetition rate and average output power may decrease when the pump saturable absorber increase. Beside, the pulse repetition rate may decrease when the pump power increase. Too short of saturable absorber may result in continuous wave rather than Q-switched laser. With appropriate parameters adjustment, the ring cavity laser has Q-switched pulse repetition rate of 61.73 kHz, pulse width of 2.60 μs and peak power of 1.58 kW, individually. For liner cavity laser has Q-switched pulses repetition rate of 65.79 kHz, pulse width of 2.21 μs and peak power of 2.48 kW, individually.

目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖表索引 VII 第一章 緒論 1 1.1 前言 1 1.2 研究動機及方法 2 1.3 文獻回顧 3 1.4 論文架構 5 第二章 光纖雷射及Q開關雷射原理 7 2.1 光纖雷射 7 2.1.1 摻鉺光纖放大原理 7 2.1.2 鉺鐿離子能階轉換原理 9 2.1.3 光纖雷射理論分析 11 2.2 Q開關光纖雷射 13 2.2.1 Q開關原理 13 2.2.2 被動式Q開關介紹 14 2.2.3 自調Q開關理論分析 15 第三章 實驗架構與元組件介紹 17 3.1 實驗架構 17 3.1.1 環型Q開關光纖雷射 18 3.1.2 線型Q開關光纖雷射 18 3.2 Q開關光纖雷射之重要元組件 19 3.2.1 泵激光源 19 3.2.2 泵激雷射合束元件 22 3.2.3 鉺鐿共摻光纖 24 3.2.4 模場轉換元件 (Mode Field Adaptor, MFA) 25 3.2.5 布拉格光纖光柵 26 第四章 鉺鐿共摻光纖雷射 29 4.1 環型光纖雷射 29 4.1.1 前向泵激架構 30 4.1.2 後向泵激架構 31 4.1.3 前後向泵激架構之輸出特性比較 33 4.2 線型光纖雷射 34 4.2.1 光纖光柵對輸出特性之影響 35 4.2.2 線型鉺鐿共摻光纖雷射 36 4.3 鉺鐿共摻光纖雷射之改善與結果分析 38 4.3.1 模場轉換元件對輸出特性之影響 38 4.3.2 鉺鐿共摻光纖雷射之改善 40 4.3.3 實驗結果分析與討論 44 第五章 被動式Q開關鉺鐿共摻光纖雷射 46 5.1環型Q開關雷射 46 5.1.1自調Q開關現象 47 5.1.2飽和吸收體長度與泵激電流之影響 48 5.2線型Q開關雷射 53 5.2.1自調Q開關現象 53 5.2.2飽和吸收體長度與泵激電流之影響 54 5.2 實驗結果分析與討論 58 第六章 結論與未來展望 62 6.1結論 62 6.2未來展望 63 參考文獻 65

[1] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies”, Proceedings of the Institution, vol. 13, pp. 1551-1558, 1966.
[2] 廖顯奎 譯, “光纖通訊”, 高立圖書有限公司, 台北, 2005。
[3] G. Sobon, P. Kaczmarek, and K. M. Abramski, “Erbium–Ytterbium co-doped fiber amplifier operating at 1550 nm with stimulated lasing at 1064 nm”, Optics Communications, vol. 285, pp. 1929-1933, 2012.
[4] J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W Erbium-Ytterbium co-doped large-core fiber laser”, Optics Communications, vol. 227, pp. 159-163, 2003.
[5] B. Morasse, S. Agger, C. Hovington, S. Chatigny, E. Gagnon, J. de Sandro, and C. Poulsen, “10 W ASE-free single-mode high-power double-cladding Er3+-Yb3+ amplifier”, Proceedings of SPIE, vol. 6453, pp. 1-8, 2007.
[6] B. Ortac, A. Hideur, M. Brunel, and G. Martel, “High repetition rate high power femtosecond fiber laser”, Proceedings of SPIE, vol. 6102, pp. 106-125, 2006.
[7] C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-Switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs”, IEEE Journal of Quantum Electronics, vol. 37, pp. 199-206, 2001.
[8] 洪寬綸, “建構於光纖光柵之光纖雷射、光感測與光監控技術之研究”, 國立台灣科技大學碩士論文, 2006。
[9] 鐘國興, “建構於光纖光柵之光纖雷射研製”, 國立台灣科技大學碩士論文, 2007。
[10] 陳宣臣, “波長可調光纖光柵之研製與應用”, 國立台灣科技大學碩士論文, 2004。
[11] 相偉龍, “長波段光纖雷射之研製”, 國立台灣科技大學碩士論文, 2007。
[12] 康榮瑞, “短脈衝光纖雷射的研究”, 國立嘉義大學碩士論文, 2006。
[13] E. Snitzer, H. Po, F. Hakimi, “Double clad, offset core Nd fiber laser”, Optical Fiber Sensors, vol. 88, 1988.
[14] M. Rose and S. Editor, “A history of the laser: a trip through the light fantastic”, Photonics, 2010.
[15] T. Theeg, C. Ottenhues, H. Sayinc, J. Neumann, and D. Kracht, “Promising single-frequency laser for next-generation gravitational wave detectors”, Proceedings of SPIE, 2016.
[16] Networks [Online], Available: https://en.wikipedia.org/wiki/Double-clad_fiber.
[17] Y. H. Tsang, D. J. Coleman, T. A. King, “High power 1.9 μm Tm3+-silica fibre laser pumped at 1.09 μm by a Yb3+-silica fibre laser”, Optics Communications, vol. 231, pp. 357-364, 2004.
[18] V. Reichel, S. Unger, and H. R. Zellmer, “8 W highly-efficient Yb-doped fiber-laser”, Proceedings of SPIE, vol. 3989, pp. 160-169, 2000.
[19] Y. Jeong, J. K. Sahu, D. N. Payne, J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power”, Optics Express, vol. 12, pp. 6088-6092, 2004.
[20] Y. Tang and J. Xu, “High power tunable Tm3+-fiber lasers and its application in pumping Cr2+:ZnSe lasers”, Lasers and Electro-Optics, pp. 404-470, 2014.
[21] 王立康, “稀土元素之光纖雷射研究”, 國立清華大學碩士論文, 2009。
[22] R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Fiber laser with 1.54 μm radiation wavelength”, Electronics Letters, vol. 27, pp. 1026, 1987.
[23] 廖協虹, “C+L-Band 摻鉺光纖放大器的研製與應用”, 國立台灣科技大學碩士論文, 2004。
[24] C. J. Koester and E. Snitzer, “Amplification in a fiber laser”, vol. 10, pp. 1182-1186, 1964.
[25] J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+ sensitized Er3+ doped silica optical fibre with ultrahigh transfer efficiency and gain”, Electronics Letters, vol. 27, pp. 1958-1959, 1991.
[26] P. K. Cheo and G. G. King, “Clad-pumped Yb/Er codoped fiber lasers”, IEEE Photonics Technology Letters, vol. 13, pp.188-190, 2001.
[27] S. Toroghi, A. K. Jafari, and A. H. Golpayegani , “A model of lasing action in a quasi-four-level thin active media”, IEEE Journal of Quantum Electronics, vol. 46, pp.871-876, 2010.
[28] Y. Hu, S. Jiang, T. luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas , and N. Peyghambarian, “Performance of high concentration Er3+-Yb3+-codoped phosphate fiber amplifier”, IEEE Photon. IEEE Photonics Technology Letters, vol. 13, pp. 657-659, 2001.
[29] Q. Han, J. Ning, and Z. Sheng, “Numerical investigation of the ASE and power scaling of cladding-pumped Er-Yb codoped fiber amplifiers”, IEEE Journal of Quantum Electronics, vol. 46, pp.1535-1541, 2010.
[30] C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers”, IEEE Journal of Quantum Electronics, vol. 30, pp. 1817-1830, 1994.
[31] 陳宣臣, “波光可調光纖光柵之研製與應用”, 國立台灣科技大學碩士論文, 2004。
[32] 王俊容, “光纖光柵與光循環器組成之光纖雷射”, 國立台灣科技大學碩士論文, 2005。
[33] H. J. Dutton, “Understanding optical communication”, Prentice Hall, 1999.
[34] 陳蔚然和孔慶昌, “埃秒(Attosecond)光脈衝—挑戰時空極限”, 中央研究院週報, 第1154期, 1984。
[35] 黃益豪, “高峰值功率主動式Q-開關光纖雷射”, 臺北科技大學碩士論文, 2007。
[36] C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and laser”, IEEE Journal of Quantum Electronics, vol. 30, pp. 1817-1830, 1994.
[37] 林清富, “光學與光電導論”, 五南出版社, 2012。
[38] 莊威哲和蘇冠暐, “高功率、高重覆率之脈衝式光子晶體光纖雷射”, 科儀新知, 第三十五卷 ,第二期, 2013。
[39] O. Svelto, “Principles of Lasers”, 1998.
[40] 廖羽嵐, “以磷化銦基材之量子井結構為半導體飽和吸收體實現1.3 μm被動式Q-開關雷射”, 國立交通大學碩士論文, 2005。
[41] D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser”, Applied Physics Letters, vol. 98, pp. 73-106, 2011.
[42] I. P. Alcock, A. C. Tropper, and A. I. Ferguson, “Q-switched operation of a neodymium-doped monomode fibre laser”, Electronics Letters, vol. 22, pp. 84-85, 1986.
[43] A. K. Stanislav, O. B. Yuri, and D. G. C. Ana, “Distributed model for actively Q-switched erbium-doped fiber lasers”, IEEE Photonics Technology Letters, vol. 47, pp. 928-934, 2011.
[44] R. Philippe and P. Dominique, “Analysis and optimization of a Q-switched erbium doped fiber laser working with a short rise time modulator”, Optical Fiber Technology, vol. 2, pp. 235-240, 1996.
[45] S. G. Cruz Vicente, M. A. Martinez Gamez, and A. V. Kiryanov, “Diode-pumped self-q-switched erbium-doped all-fiber laser”, Quantum Electronics, vol. 34, pp. 310-314, 2004.
[46] M. Ding and P. K. Cheo, “Effect of Yb/Er co-doping on suppressing self-pulsing in Er-doped fiber laser”, IEEE Photonics Technology Letters, vol. 24, pp. 94-98, 2004.
[47] 楊亞婷, 杜洋, 王海燕和胡貴軍, “自調Q摻鉺光纖激光器動態特性研究”, Laser Technology, vol. 39, pp. 680-684,2015。
[48] Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average inversion level, modeling, and physics of Erbium-doped fiber amplifiers”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, pp. 991-1007, 1997.
[49] L. Keigo, “Elements of photonics”, Elements of Photonics, vol.2, 2002.
[50] J. Y. Allain, M. Monerie, and H. Poignant, “Ytterbium-doped fluoride fiber laser operating at 1.02 μm”, Electronics Letters, vol. 28, pp.988-989, 1992.
[51] 龔智群, 王小林, 曹澗秋, 郭少锋和江厚滿, “國產高功率光纖泵浦合束器特性研究”, Infrared and Laser Engineering, vol. 42, pp. 2659-2662, 2013。
[52] A. Wetter, M. Fanucher, and M. Lovelady, “Tapered fused-bundle splitter capable of 1 kW CW operation”, Proceedings of SPIE, vol.6453, pp.10-21, 2007.
[53] 王立康, “高功率光纖雷射簡介”, 光學工程, 第104期, 2008年。
[54] X. Zhou, Z. Chen, H. Zhou, and J. Hou, “Mode-field adaptor between large-mode-area fiber and single-mode fiber based on fiber tapering and thermally expanded core technique”, Applied Optics, vol. 53, pp. 5053-5057, 2014.
[55] 游易霖,“長波長環形摻鉺光纖雷射特性分析與優化”,國立台灣科技大學碩士論文, 2009。
[56] 倪澤恩,“基礎雷射物理”,五南出版社,2015。
[57] 許芳文,“全光纖式被動品質開關短脈衝雷射之研究”,國立嘉義大學碩士論文, 2006。

無法下載圖示 全文公開日期 2020/08/15 (校內網路)
全文公開日期 2026/08/15 (校外網路)
全文公開日期 2026/08/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE