簡易檢索 / 詳目顯示

研究生: HELMI SON HAJI
HELMI SON HAJI
論文名稱: 具高度有序周期性與持久潤滑性和抗冰性之金屬奈 米管光滑注液多孔表面(MeNTAs SLIPS)
Metallic Nanotubes Array (MeNTAs) Slippery Liquid-Infused Porous Surface (SLIPS) with Highly Ordered Periodicity Durability of Lubricant and Anti-icing Properties
指導教授: 朱瑾
Chu Jinn
口試委員: Pakman Yiu
Pakman Yiu
Yu-Cheng Chiu
Yu-Cheng Chiu
Zong-Hong Lin
Zong-Hong Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 77
中文關鍵詞: SLIPSMeNTAs疏水性
外文關鍵詞: SLIPS, MeNTAs, Hidrophobicity
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

光滑注液多孔表面(SLIPS)是一種由潤滑的微/納米結構與油構成的表面。
這種固被固定的潤滑劑有效創造出一個超光滑、連續的和化學上均勻的液
體表面,防止外來液滴直接接觸底層固體基質。各種研究表明,SLIPS 可
以降低結冰的速度,在高濕度的環境條件下有效地去除冷凝的水蒸氣,並
顯示出比超疏水表面(SHS)更低的冰附著力。SLIPS 點燃了塗層技術創
新的新方法,包括醫療設備的表面塗層、提高抗凍性的表面塗層、防垢和
防腐蝕。在這篇論文中,為了提高 SLIPS 的環境友好性、防水性和穩定性,
設計並通過 PVD 磁控濺射工藝製備了金屬奈米管陣列(MeNTAs)。然後
選擇 Kritox GPL103、Kritox GPL105 和 Kritox GPL107 三種油來潤滑
MeNTAs 使之成為 MeNTAs SLIPS。通過掃描電子顯微鏡(SEM)觀察了
MeNTAs 和 MeNTAs SLIPS 的結構。利用接觸角分析儀對 MeNTAs SLIPS
的潤濕性進行了鑑定,並研究了 MeNTAs SLIPS 的超光滑特性、耐久性和
抗冰性能。結果表明,使用直流磁控濺鍍方法成功地制造了直徑為 1、2、
10和20微米、高2微米的Zr-Cu-Al-Ni MeNTAs,它們具有良好的疏水性,
WCA 高於 110°。製造出的 MeNTAs SLIPS 具有良好的疏水性,WCA 高於
90,MeNTAs SLIPS GPL103、MeNTAs SLIPS GPL105 和 MeNTAs SLIPS
GPL107 的平均 WCA 分別為 116°、101°和 95°。此外,MeNTAs SLIPS
GPL103 出現了強力的水吸附性,而 MeNTAs SLIPS GPL105 和 MeNTAs
SLIPS GPL107 的 WSA 非常低,為 0.5°。MeNTAs SLIPS 顯示出延遲結冰
vi
的特性,可以在 24 次結冰周期內保持 WCA 穩定。與 MeNTAs SLIPS
GPL103 和 MeNTAs SLIPS GPL105 相比,MeNTAs SLIPS GPL107 顯示出
最佳性能。結果表明,小直徑的 MeNTAs 比大尺寸的表現更好。MeNTAs
SLIPS 在高速旋轉耐久測試中顯示出穩定的疏水性,MeNTAS SLIPS
GPL105 和 MeNTAS SLIPS GPL107 的 WSA 分別低於 7.2°和 2.1°。SEM 圖
像顯示了結冰和除冰過程對 MeNTAs 結構造成的損害。


Slippery Liquid-Infused Porous Surface (SLIPS) is a surface that comprises a
lubricating micro/nano-structured substrate with oil. This immobilized lubricant efficiently
creates an ultra-smooth, continuous, and chemically homogenous liquid surface, preventing
foreign liquid droplets from directly contacting the underlying solid substrate. Various studies
have shown that SLIPS can reduce the rate of ice accretion, effectively remove condensed water
vapor in high humidity environmental conditions, and shows a lower adhesion to ice than
superhydrophobic surface (SHS). SLIPS has ignited new methods of innovation in coating
technologies, including surface coatings on medical devices, surface coatings to improve frost
resistance, anti-scaling, and anti-corrosion. In this thesis, to improve environmental friendly,
the water-repellency and stability of SLIPS, Metallic Nanotube Arrays (MeNTAs) was
designed and prepared through a PVD magnetron sputtering process. Then three kind of oils,
Kritox GPL103, Kritox GPL105, and Kritox GPL107 oil, were selected to lubricate MeNTAs
become MeNTAs SLIPS. The MeNTAs and MeNTAs SLIPS structures were observed by
scanning electron microscopy (SEM). The wettability characteristic of MeNTAs SLIPS was
characterized by contact angle analyser and slippery characteristic, durability and anti-icing
properties of MeNTAs SLIPS were studied. The result shows that Zr-Cu-Al-Ni MeNTAs with
sizes 1, 2, 10, and 20 µm in diameter and 2 µm high was successfully fabricated using the
DCMS methods, they have good hydrophobicity with WCA above 110°. The fabricated
MeNTAs SLIPS produce SLIPS with good hydrophobicity characterized by WCA above 90,
MeNTAs SLIPS GPL103, MeNTAs SLIPS GPL105 and MeNTAs SLIPS GPL107, have an
average WCA of 116°, 101°, and 95 °, respectively. Furthermore, MeNTAs SLIPS GPL103
experienced water pinning, while MeNTAs SLIPS GPL105 and MeNTAs SLIPS GPL107 had
very low WSA of 0.5°. MeNTAs SLIPS show ice delaying characteristics and can maintain
WCA stable up to 24 times icing cycles. MeNTAs SLIPS GPL107 showed the best performance
compared to MeNTAs SLIPS GPL103 and MeNTAs SLIPS GPL105. And the result show that
small diameter MeNTAs perform better than the big size ones. MeNTAs SLIPS show stable
hydrophobicity at spinning test that showed WSA below 7.2° and 2.1° for MeNTAS SLIPS
GPL105 and MeNTAS SLIPS GPL107, respectively. SEM Images showed damage to the
structure of MeNTAs caused by the icing and deicing process.

TABLE OF CONTENS ABSTRACT iii ACKNOWLEDGEMENTS vii TABLE OF CONTENS ix LIST OF FIGURES xii LIST OF TABLES xvi CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 4 CHAPTER 3 EXPERIMENTAL PROCEDURES 34 CHAPTER 4 RESULTS AND DISCUSSION 43 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORKS 77 REFERENCES xii

[1] Y. T. Cheng, D. E. Rodak, C. A. Wong, and C. A. Hayden, "Effects of micro- and
nano-structures on the self-cleaning behaviour of lotus leaves,", Nanotechnology, vol.
17, no. 5, pp. 1359-1362, Mar 14 2006, doi: 10.1088/0957-4484/17/5/032.
[2] Q. Liu, K. T. Wu, M. Kobayashi, C. K. Jen, and N. Mrad, "In situ ice and structure
thickness monitoring using integrated and flexible ultrasonic transducers,", Smart
Mater Struct, vol. 17, no. 4, Aug 2008, doi: Artn 04502310.1088/0964-
1726/17/4/045023.
[3] H. Memon, J. P. Liu, D. S. A. De Focatiis, K. S. Choi, and X. H. Hou, "Intrinsic
dependence of ice adhesion strength on surface roughness,", Surf Coat Tech, vol. 385,
Mar 15 2020, doi: ARTN 12538210.1016/j.surfcoat.2020.125382.
[4] W. H. Yao, L. Wu, L. D. Sun, B. Jiang, and F. S. Pan, "Recent developments in
slippery liquid-infused porous surface,", Prog Org Coat, vol. 166, May 2022, doi:
ARTN 10680610.1016/j.porgcoat.2022.106806.
[5] W. Tong and D. S. Xiong, "Direct laser texturing technique for metal surfaces to
achieve superhydrophobicity,", Mater Today Phys, vol. 23, Mar 2022, doi: ARTN
10065110.1016/j.mtphys.2022.100651.
[6] T. B. Nguyen, S. Park, and H. Lim, "Effects of morphology parameters on anti-icing
performance in superhydrophobic surfaces,", Appl Surf Sci, vol. 435, pp. 585-591, Mar
30 2018, doi: 10.1016/j.apsusc.2017.11.137.
[7] J. Chen et al., "Superhydrophobic surfaces cannot reduce ice adhesion,", Appl Phys
Lett, vol. 101, no. 11, Sep 10 2012, doi: Artn 11160310.1063/1.4752436.
[8] T. S. Wong et al., "Bioinspired self-repairing slippery surfaces with pressure-stable
omniphobicity,", Nature, vol. 477, no. 7365, pp. 443-447, Sep 22 2011, doi:
10.1038/nature10447.
[9] Y. F. Long, X. X. Yin, P. Mu, Q. T. Wang, J. J. Hu, and J. Li, "Slippery liquid-infused
porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and
intensified durability for protecting substrates,", Chem Eng J, vol. 401, Dec 1 2020,
doi: ARTN 12613710.1016/j.cej.2020.126137.
[10] J. Jiang, Q. Sheng, G. H. Tang, M. Y. Yang, and L. Guo, "Anti-icing propagation and
icephobicity of slippery liquid-infused porous surface for condensation frosting,", Int J
Heat Mass Tran, vol. 190, Jul 2022, doi: ARTN
12273010.1016/j.ijheatmasstransfer.2022.122730.
[11] S. Y. Li et al., "Slippery liquid-infused microphase separation surface enables highly
robust anti-fouling, anti-corrosion, anti-icing and anti-scaling coating on diverse
substrates,", Chem Eng J, vol. 431, Mar 1 2022, doi: ARTN
13394510.1016/j.cej.2021.133945.
[12] J. K. Chen, W. T. Chen, C. C. Cheng, C. C. Yu, and J. P. Chu, "Metallic glass
nanotube arrays: Preparation and surface characterizations,", Mater Today, vol. 21, no.
2, pp. 178-185, Mar 2018, doi: 10.1016/j.mattod.2017.10.007.
[13] H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, and E. Ma, "Atomic packing and
short-to-medium-range order in metallic glasses,", Nature, vol. 439, no. 7075, pp. 419-
425, Jan 26 2006, doi: 10.1038/nature04421.
[14] A. Inoue, K. Ohtera, K. Kita, and T. Masumoto, "New Amorphous Mg-Ce-Ni Alloys
with High-Strength and Good Ductility,", Jpn J Appl Phys 2, vol. 27, no. 12, pp.
L2248-L2251, Dec 1988, doi: Doi 10.1143/Jjap.27.L2248.
[15] A. Inoue, "Stabilization of metallic supercooled liquid and bulk amorphous alloys,",
Acta Mater, vol. 48, no. 1, pp. 279-306, Jan 1 2000, doi: Doi 10.1016/S1359-
6454(99)00300-6.
xiii
[16] A. Greer, Y. Cheng, and E. Ma, "Shear bands in metallic glasses," Materials Science
and Engineering: R: Reports, vol. 74, no. 4, pp. 71-132, 2013.
[17] C. A. Schuh, T. C. Hufnagel, and U. Ramamurty, "Mechanical behavior of amorphous
alloys," Acta Mater, vol. 55, no. 12, pp. 4067-4109, 2007.
[18] J. P. Chu, C.-M. Lee, R. Huang, and P. Liaw, "Zr-based glass-forming film for
fatigue-property improvements of 316L stainless steel: Annealing effects," Surface
and Coatings Technology, vol. 205, no. 16, pp. 4030-4034, 2011.
[19] P.-S. Chen, H.-W. Chen, J.-G. Duh, J.-W. Lee, and J. S.-C. Jang, "Characterization of
mechanical properties and adhesion of Ta–Zr–Cu–Al–Ag thin film metallic glasses,"
Surface and Coatings Technology, vol. 231, pp. 332-336, 2013.
[20] S. Korkmaz and İ. A. Kariper, "Glass formation, production and superior properties of
Zr-based thin film metallic glasses (TFMGs): A status review," Journal of NonCrystalline Solids, vol. 527, p. 119753, 2020.
[21] J. P. Chu et al., "Thin film metallic glasses: Unique properties and potential
applications,", Thin Solid Films, vol. 520, no. 16, pp. 5097-5122, Jun 1 2012, doi:
10.1016/j.tsf.2012.03.092.
[22] J. Lee, K. H. Huang, K. C. Hsu, H. C. Tung, J. W. Lee, and J. G. Duh, "Applying
composition control to improve the mechanical and thermal properties of Zr-Cu-Ni-Al
thin film metallic glass by magnetron DC sputtering,", Surf Coat Tech, vol. 278, pp.
132-137, Sep 25 2015, doi: 10.1016/j.surfcoat.2015.07.015.
[23] J. Lee and J. G. Duh, "Structural evolution of Zr-Cu-Ni-Al-N thin film metallic glass
and its diffusion barrier performance in Cu-Si interconnect at elevated temperature,",
Vacuum, vol. 142, pp. 81-86, Aug 2017, doi: 10.1016/j.vacuum.2017.05.009.
[24] A. Halim, L. Ernawati, M. Ismayati, F. Martak, and T. Enomae, "Bioinspired
cellulose-based membranes in oily wastewater treatment,", Front Env Sci Eng, vol. 16,
no. 7, Jul 2022, doi: ARTN 9410.1007/s11783-021-1515-2.
[25] P. Dimitrakellis and E. Gogolides, "Hydrophobic and superhydrophobic surfaces
fabricated using atmospheric pressure cold plasma technology: A review,", Adv
Colloid Interfac, vol. 254, pp. 1-21, Apr 2018, doi: 10.1016/j.cis.2018.03.009.
[26] M. Liravi, H. Pakzad, A. Moosavi, and A. Nouri-Borujerdi, "A comprehensive review
on recent advances in superhydrophobic surfaces and their applications for drag
reduction,", Prog Org Coat, vol. 140, Mar 2020, doi: ARTN
10553710.1016/j.porgcoat.2019.105537.
[27] C. G. J. Prakash and R. Prasanth, "Recent trends in fabrication of nepenthes inspired
SLIPs: Design strategies for self-healing efficient anti-icing surfaces,", Surf Interfaces,
vol. 21, Dec 2020, doi: ARTN 10067810.1016/j.surfin.2020.100678.
[28] P. Baumli et al., "The challenge of lubricant-replenishment on lubricant-impregnated
surfaces,", Adv Colloid Interfac, vol. 287, Jan 2021, doi: ARTN
10232910.1016/j.cis.2020.102329.
[29] Y. Z. Liang, C. Y. Li, P. Wang, and D. Zhang, "Fabrication of a robust slippery liquid
infused porous surface on Q235 carbon steel for inhibiting microbiologically
influenced corrosion,", Colloid Surface A, vol. 631, Dec 20 2021, doi: ARTN
12769610.1016/j.colsurfa.2021.127696.
[30] W. J. Cui and T. A. Pakkanen, "Icephobic performance of one-step silicone-oilinfused slippery coatings: Effects of surface energy, oil and nanoparticle contents,", J
Colloid Interf Sci, vol. 558, pp. 251-258, Jan 15 2020, doi: 10.1016/j.jcis.2019.09.119.
[31] X. L. Liu, H. W. Chen, Z. H. Zhao, Y. Y. Yan, and D. Y. Zhang, "Slippery liquidinfused porous electric heating coating for anti-icing and de-icing applications,", Surf
Coat Tech, vol. 374, pp. 889-896, Sep 25 2019, doi: 10.1016/j.surfcoat.2019.06.077.
xiv
[32] S. Heydarian, R. Jafari, and G. Momen, "Recent progress in the anti-icing
performance of slippery liquid-infused surfaces,", Prog Org Coat, vol. 151, Feb 2021,
doi: ARTN 10609610.1016/j.porgcoat.2020.106096.
[33] P. Guo, Y. M. Zheng, M. X. Wen, C. Song, Y. C. Lin, and L. Jiang, "Icephobic/AntiIcing Properties of Micro/Nanostructured Surfaces,", Adv Mater, vol. 24, no. 19, pp.
2642-2648, May 15 2012, doi: 10.1002/adma.201104412.
[34] S. Nath, S. F. Ahmadi, and J. B. Boreyko, "A Review of Condensation Frosting,",
Nanosc Microsc Therm, vol. 21, no. 2, pp. 81-101, 2017, doi:
10.1080/15567265.2016.1256007.
[35] K. Rykaczewski, S. Anand, S. B. Subramanyam, and K. K. Varanasi, "Mechanism of
Frost Formation on Lubricant-Impregnated Surfaces,", Langmuir, vol. 29, no. 17, pp.
5230-5238, Apr 30 2013, doi: 10.1021/la400801s.
[36] J. H. Kim, M. J. Kim, B. Lee, J. M. Chun, V. Patil, and Y. S. Kim, "Durable icelubricating surfaces based on polydimethylsiloxane embedded silicone oil infused
silica aerogel,", Appl Surf Sci, vol. 512, May 15 2020, doi: ARTN
14572810.1016/j.apsusc.2020.145728.
[37] B. P. Jelle, "The challenge of removing snow downfall on photovoltaic solar cell roofs
in order to maximize solar energy efficiency-Research opportunities for the future,",
Energ Buildings, vol. 67, pp. 334-351, Dec 2013, doi: 10.1016/j.enbuild.2013.08.010.
[38] R. W. Gent, N. P. Dart, and J. T. Cansdale, "Aircraft icing," Philosophical
Transactions of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, vol. 358, no. 1776, pp. 2873-2911, 2000.
[39] L. F. Mobarakeh, R. Jafari, and M. Farzaneh, "Robust icephobic, and anticorrosive
plasma polymer coating,", Cold Reg Sci Technol, vol. 151, pp. 89-93, Jul 2018, doi:
10.1016/j.coldregions.2018.03.009.
[40] S. L. Jin, J. Liu, J. Y. Lv, S. W. Wu, and J. J. Wang, "Interfacial Materials for AntiIcing: Beyond Superhydrophobic Surfaces,", Chem-Asian J, vol. 13, no. 11, pp. 1406-
1414, Jun 4 2018, doi: 10.1002/asia.201800241.
[41] R. Menini and M. Farzaneh, "Advanced icephobic coatings," Journal of adhesion
science and technology, vol. 25, no. 9, pp. 971-992, 2011.
[42] B. Li and K. X. Li, "Droplet wettability and repellency on fluorinated lubricantinfused surfaces: A molecular dynamics study,", Appl Surf Sci, vol. 598, Oct 1 2022,
doi: ARTN 15378210.1016/j.apsusc.2022.153782.
[43] D. J. Preston, Y. Song, Z. M. Lu, D. S. Antao, and E. N. Wang, "Design of Lubricant
Infused Surfaces,", Acs Appl Mater Inter, vol. 9, no. 48, pp. 42383-42392, Dec 6 2017,
doi: 10.1021/acsami.7b14311.
[44] S. Peppou-Chapman, J. K. Hong, A. Waterhouse, and C. Neto, "Life and death of
liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid
layer,", Chem Soc Rev, vol. 49, no. 11, pp. 3688-3715, Jun 7 2020, doi:
10.1039/d0cs00036a.
[45] X. Yang et al., "Bioinspired Slippery Lubricant-Infused Surfaces With External
Stimuli Responsive Wettability: A Mini Review,", Front Chem, vol. 7, Nov 29 2019,
doi: ARTN 82610.3389/fchem.2019.00826.
[46] N. Bjelobrk, H. L. Girard, S. B. Subramanyam, H. M. Kwon, D. Quere, and K. K.
Varanasi, "Thermocapillary motion on lubricant-impregnated surfaces,", Phys Rev
Fluids, vol. 1, no. 6, Oct 14 2016, doi: ARTN
06390210.1103/PhysRevFluids.1.063902.
[47] A. Sasidharanpillai, Y. Lee, and S. Lee, "Design of stable liquid infused surfaces:
Influence of oil viscosity on stability,", Colloid Surface A, vol. 646, Aug 5 2022, doi:
ARTN 12892310.1016/j.colsurfa.2022.128923.
xv
[48] J. P. Chu, K. W. Tseng, and C. Y. Liu, "Large-area alloy nanotube arrays with highlyordered periodicity: Fabrication and characterization,", Mater Design, vol. 209, Nov 1
2021, doi: ARTN 10999810.1016/j.matdes.2021.109998.
[49] Y. X. Yang and J. P. Chu, "Cost-effective large-area Ag nanotube arrays for SERS
detections: effects of nanotube geometry,", Nanotechnology, vol. 32, no. 47, Nov 19
2021, doi: ARTN 47550410.1088/1361-6528/ac1636.
[50] J. S. Ye, B. R. Huang, and J. P. Chu, "ZnO-NWs/Cu-based metallic glass nanotube
array (ZNWs/Cu-MeNTA) for field emission properties,", J Alloy Compd, vol. 890,
Jan 15 2022, doi: ARTN 16184610.1016/j.jallcom.2021.161846.
[51] P. Singh, P. H. Chiang, M. Y. Bai, J. Wong, M. T. Chiou, and J. P. Chu, "Fabrication
and characterization of metallic glass nanotube array as in application of wound
dressing,", J Alloy Compd, vol. 886, Dec 15 2021, doi: ARTN
16127510.1016/j.jallcom.2021.161275.
[52] S. Madge, A. Caron, R. Gralla, G. Wilde, and S. K. Mishra, "Novel W-based metallic
glass with high hardness and wear resistance," Intermetallics, vol. 47, pp. 6-10, 2014.
[53] Z. Wang and Z. Guo, "Biomimetic self-slippery and transferable transparent lubricantinfused functional surfaces," Nanoscale, vol. 10, no. 42, pp. 19879-19889, 2018.
[54] C.-C. Chang, C.-J. Wu, Y.-J. Sheng, and H.-K. Tsao, "Anti-smudge behavior of
facilely fabricated liquid-infused surfaces with extremely low contact angle hysteresis
property," RSC advances, vol. 6, no. 23, pp. 19214-19222, 2016.
[55] L. Hao et al., "Metal-organic framework (MOF)-based slippery liquid-infused porous
surface (SLIPS) for purely physical antibacterial applications," Applied Materials
Today, vol. 27, p. 101430, 2022.
[56] D. Zhang, Y. Xia, X. Chen, S. Shi, and L. Lei, "PDMS-infused poly (high internal
phase emulsion) templates for the construction of slippery liquid-infused porous
surfaces with self-cleaning and self-repairing properties," Langmuir, vol. 35, no. 25,
pp. 8276-8284, 2019.
[57] P. Agrawal, T. T. Salomons, D. S. Chiriac, A. C. Ross, and R. D. Oleschuk, "Facile
actuation of organic and aqueous droplets on slippery liquid-infused porous surfaces
for the application of on-chip polymer synthesis and liquid–liquid extraction," Acs
Appl Mater Inter, vol. 11, no. 31, pp. 28327-28335, 2019.
[58] S. Habib et al., "Slippery liquid-infused porous polymeric surfaces based on natural
oil with antimicrobial effect," Polymers, vol. 13, no. 2, p. 206, 2021.
[59] Y. Liu et al., "Design and preparation of bioinspired slippery liquid-infused porous
surfaces with anti-icing performance via delayed phase inversion process," Colloids
and Surfaces A: Physicochemical and Engineering Aspects, vol. 588, p. 124384, 2020.
[60] Q. Wu et al., "Slippery liquid-attached surface for robust biofouling resistance," ACS
Biomaterials Science & Engineering, vol. 6, no. 1, pp. 358-366, 2019.
[61] S. J. Lee, H. N. Kim, W. Choi, G. Y. Yoon, and E. Seo, "A nature-inspired lubricantinfused surface for sustainable drag reduction," Soft Matter, vol. 15, no. 42, pp. 8459-
8467, 2019.
[62] J. D. Smith et al., "Droplet mobility on lubricant-impregnated surfaces," Soft Matter,
vol. 9, no. 6, pp. 1772-1780, 2013.
[63] Q. Liu, Y. Yang, M. Huang, Y. Zhou, Y. Liu, and X. Liang, "Durability of a lubricantinfused Electrospray Silicon Rubber surface as an anti-icing coating," Appl Surf Sci,
vol. 346, pp. 68-76, 2015.
[64] F. Veronesi, G. Boveri, J. Mora, A. Corozzi, and M. Raimondo, "Icephobic properties
of anti-wetting coatings for aeronautical applications,", Surf Coat Tech, vol. 421, Sep
15 2021, doi: ARTN 12736310.1016/j.surfcoat.2021.127363.
xvi
[65] A. M. Emelyanenko, F. M. Shagieva, A. G. Domantovsky, and L. B. Boinovich,
"Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic
coating robust against long-term contact with water, cavitation, and abrasion,", Appl
Surf Sci, vol. 332, pp. 513-517, Mar 30 2015, doi: 10.1016/j.apsusc.2015.01.202.
[66] Y. J. Wang, W. J. Zhao, W. T. Wu, C. T. Wang, X. D. Wu, and Q. J. Xue,
"Fabricating Bionic Ultraslippery Surface on Titanium Alloys with Excellent FoulingResistant Performance,", Acs Appl Bio Mater, vol. 2, no. 1, pp. 155-162, Jan 22 2019,
doi: 10.1021/acsabm.8b00503.
[67] Z. C. Yang, X. Y. He, J. F. Chang, C. Q. Yuan, and X. Q. Bai, "Facile fabrication of
fluorine-free slippery lubricant-infused cerium stearate surfaces for marine antifouling
and anticorrosion application,", Surf Coat Tech, vol. 415, Jun 15 2021, doi: ARTN
12713610.1016/j.surfcoat.2021.127136.
[68] M. Elsharkawy, D. Tortorella, S. Kapatral, and C. M. Megaridis, "Combating frosting
with Joule-heated liquid-infused superhydrophobic coatings," Langmuir, vol. 32, no.
17, pp. 4278-4288, 2016.
[69] H. Bazyar, P. Y. Lv, J. A. Wood, S. Porada, D. Lohse, and R. G. H. Lammertink,
"Liquid-liquid displacement in slippery liquid-infused membranes (SLIMs),", Soft
Matter, vol. 14, no. 10, pp. 1780-1788, Mar 14 2018, doi: 10.1039/c7sm02337e

無法下載圖示 全文公開日期 2025/08/30 (校內網路)
全文公開日期 2025/08/30 (校外網路)
全文公開日期 2025/08/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE