簡易檢索 / 詳目顯示

研究生: 陳文玄
Wen-hsuan Chen
論文名稱: 不同交聯劑對藍藻蛋白與聚乙烯亞胺接合物轉染效率之評估
Assessment of transfection by using cyanophycin and polyethylenimine cross-link with different cross-linking reagents
指導教授: 曾文祺
Wen-chi Tseng
口試委員: 鄭如忠
Ru-jong Jeng
方翠筠
Tsuei-yun Fang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 77
中文關鍵詞: 藍藻蛋白聚乙烯亞胺轉染戊二醛葡萄糖genipin
外文關鍵詞: glu
相關次數: 點閱:231下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藍藻蛋白為生物可降解的高分子,經由基因重組生產藍藻蛋白,其成分由aspartic acid、arginine以及lysine所構成,而lysine上的一級胺比arginine更容易進行化學修飾。本研究是利用不同的交聯劑將lysine上的一級胺與低分子量的聚乙烯亞胺(Polyethylenimine,PEI,2 kDa)接合起來,所使用的交聯劑為glutaraldehyde、glucose、genipin,都能與一級胺反應,目的是希望可以利用此高分子有效地轉染細胞。
    藉由DNA電泳可以判斷接合物對DNA的包覆能力,以glucose、glutaraldehyde、genipin交聯藍藻蛋白與PEI(2 kDa)的接合物都能有效的包覆DNA,因此可以再近一步對動物進行細胞轉染實驗。
    對CHO cell轉染結果,從螢光顯微鏡下的綠色螢光蛋白的表現中,發現以glucose交聯藍藻蛋白與PEI(2 kDa)的接合物相較於以glutaraldehyde與genipin交聯的接合物,綠色螢光蛋白的表現相對較多。但是對於高分子量的聚乙烯亞胺(25 kDa),綠色螢光蛋白的表現是相對的少許多。轉染後接著進行毒性測試,由存活率可看出glucose交聯的接合物對細胞不具毒性。
    藍藻蛋白與PEI(2 kDa)以glucose交聯能有效地包覆DNA以及送入細胞中,但未來可改變PEI(2 kDa)的 比例來評估能否提升轉染效率,有機會當作良好的基因傳遞載體。


    Cyanopycin can be produced by recombinant Escherichia coli. It is a biodegradable polymer that consists of aspartic acid, arginine and lysine. The primary amine of lysine is easier to be chemically modified than the functional groups of arginine. In this study, we utilized the primary amine of lysine and low molecular weight polyethylenimine (PEI) to be cross-linked by different cross-linking reagents (glutaraldehyde, glucose, and genipin). The cross-linking reagents can react with primary amines. We expect that the cross-linked products can be used to transfect cells effectively.
    By DNA electrophoresis, we found that the cross-linked products by glutaraldehyde, glucose, and genipin have the ability to encapsulate DNA. We further transfected mammalian cell to examine the expression of green fluorescent protein.
    The results of transfection of Chinese Hamster Ovary (CHO) cells were observed under a fluorescent microscope. The cross-linked products by glucose resulted in a higher expression level of green fluorescent protein in comparisons with the other products by glutaraldehyde and genipin. However, the transfection efficiencies of those cross-linked products are not as good as that of high molecular weight PEI. The MTT assay was used to investigate the cellular viability after transfection. The results also showed that the cross-linked products by glucose are nontoxic.

    目錄 中文摘要 I Abstract II 目錄 IV 圖目錄 IX 表目錄 XIV 第一章 緒論 1 第二章 文獻回顧 2 2.1藍藻蛋白簡介 2 2.1.1藍藻蛋白的特性 3 2.1.2基因重組藍藻蛋白 3 2.1.3藍藻蛋白之應用 5 2.2.基因治療簡介 6 2.2.1聚乙烯亞胺(Polyethylenimine,PEI)之特性 12 2.3戊二醛(Glutaraldehyde)簡介與交聯機制 14 2.4葡萄糖(Glucose)簡介與交聯機制 15 2.5 Genipin簡介與交聯機制 16 2.6 MTT毒性測試 17 第三章 實驗部分 19 3.1 實驗材料 19 3.1.1菌株 19 3.1.2質體核酸pEGFP-C1 19 3.1.3細胞株 20 3.1.4細胞培養液 20 3.1.5抗生素 20 3.1.6其他 20 3.2實驗藥品 20 3.3實驗儀器 22 3.4溶液配製 23 3.5實驗步驟 29 3.5.1藍藻蛋白的生產 29 3.5.1.1培養微生物於瓊脂板上 29 3.5.1.2培養微生物於2 mL培養基 29 3.5.1.3培養微生物於60mL LB培養基 30 3.5.1.4培養微生物於3 L發酵槽 30 3.5.1.5自E. coli菌體純化出藍藻蛋白 31 3.5.1.6純化水溶性藍藻蛋白 31 3.5.1.7非水溶性藍藻蛋白純化 32 3.5.1.8 SDS-PAGE分析藍藻蛋白 34 3.5.2藍藻蛋白與聚乙烯亞胺(2 kDa)的交聯反應 34 3.5.2.1以戊二醛交聯藍藻蛋白與聚乙烯亞胺(2 kDa)的製備 35 3.5.2.2以葡萄糖交聯藍藻蛋白與聚乙烯亞胺(2 kDa)的製備 36 3.5.2.3以Genipin交聯藍藻蛋白與聚乙烯亞胺(2 kDa)的製備 36 3.5.3藍藻蛋白與聚乙烯亞胺(2 kDa)的交聯對DNA包覆測試 37 3.5.3.1 DNA電泳膠配製 37 3.5.3.2 DNA-polymer製備 37 3.5.4細胞培養與轉染效率測定 38 3.5.4.1動物細胞的繼代培養(cellular subculture) 38 3.5.4.2細胞轉染 (Transfection) 38 3.5.4.3細胞存活率(MTT Assay) 39 第四章 結果與討論 40 4.1 SDS-PAGE分析 40 4.1.1 SDS-PAGE結果 40 4.2 DNA電泳結果分析 40 4.2.1藍藻蛋白與聚乙烯亞胺(2 kDa)以戊二醛交聯之電泳結果 41 4.2.2藍藻蛋白與聚乙烯亞胺(2 kDa)以葡萄糖交聯之電泳結果 41 4.2.3藍藻蛋白與聚乙烯亞胺(2 kDa)以genipin交聯之電泳結果 41 4.3轉染結果分析 42 4.3.1藍藻蛋白與聚乙烯亞胺(2 kDa)以戊二醛交聯之轉染結果 42 4.3.2藍藻蛋白與聚乙烯亞胺(2 kDa)以葡萄糖交聯之轉染結果 42 4.3.3藍藻蛋白與聚乙烯亞胺(2 kDa)以genipin交聯之轉染結果 43 4.4 MTT毒性測試結果 44 第五章 結論 46 參考文獻 47 圖表 53   圖目錄 圖1天然藍藻蛋白的結構[4] 3 圖2基因重組培養後的藍藻蛋白[7] 4 圖3支鏈型聚乙烯亞胺之分子結構[12] 14 圖4胞飲作用[24] 14 圖5戊二醛的交聯機制[26] 15 圖6 葡萄糖的交聯機制[28] 16 圖7 Genipin交連機制[29] 17 圖8 MTT與粒線體反應機制 18 圖9質體核酸pEGFP-C1基因圖譜(節錄自department of national recombinant gene bank) 19 圖9 15% SDS-PAGE對水溶性與非水溶性藍藻蛋白分子量 53 圖10藍藻蛋白與聚乙烯亞胺(2 kDa)以戊二醛交聯之接合物對DNA進行包覆 54 圖11不同交聯劑(葡萄糖與genipin)對藍藻蛋白與聚乙烯亞胺(2 kDa)接合物之電泳圖 55 圖12.1 DNA對戊二醛交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:5之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態(接續下頁) 56 圖12.2 DNA對戊二醛交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:5之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態(承接上頁) 57 圖13 DNA對戊二醛交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:15之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態 58 圖14 DNA對戊二醛交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:50之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態 59 圖15.1 DNA對葡萄糖交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:15之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態(接續下頁) 60 圖15.2 DNA對葡萄糖交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:15之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態(承接上頁) 61 圖16.1 DNA對葡萄糖交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:50之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態(接續下頁) 62 圖16.2 DNA對葡萄糖交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:50之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態(承接上頁) 63 圖17.1 DNA對葡萄糖交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:100之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態(接續下頁) 64 圖17.2 DNA對葡萄糖交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:100之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態(承接上頁) 65 圖18.1 DNA對葡萄糖交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:150之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態(接續下頁) 66 圖18.2 DNA對葡萄糖交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:150之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態(承接上頁) 67 圖19.1 DNA對葡萄糖交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:200之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態(接續下頁) 68 圖19.2 DNA對葡萄糖交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:200之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態(承接上頁) 69 圖20 DNA對genipin交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:5之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態 70 圖21 DNA對genipin交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:15之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態 71 圖22 DNA對genipin交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:50之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態 72 圖23 DNA對genipin交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:75之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態 73 圖24 DNA對genipin交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:100之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態 74 圖25 DNA對genipin交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:150之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態 75 圖26 DNA對genipin交聯藍藻蛋白與聚乙烯亞胺(2 kDa)接合物重量比為1:200之轉染。A為螢光顯微鏡觀察到的綠色螢光蛋白質表現;B為顯微鏡下所拍攝到的CHO cell生長狀態 76 圖27 C4P1GC、C4P2GC、C4P3GC、C4P4GC、C4P5GC與C4P6GC重量比皆為1:100、1:150和1:200的毒性測試 77   表目錄 表1.1戊二醛為交聯劑之交聯的莫耳比 36 表1.2葡萄糖為交聯劑之交聯的莫耳比 36 表1.3 Genipin為交聯劑之交聯的莫耳比 36 表2接合物進行DNA電泳分析的重量比 37 表3接合物轉染細胞的重量比 39

    參考文獻
    [1] Ziegler K, Diener A, Herpin C, Richter R, Deutzmann R, Lockau W. Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin). Eur J Biochem. 1998;254:154-9.
    [2] Du J, Li L, Ding X, Hu H, Lu Y, Zhou S. Isolation and characterization of a novel cyanophycin synthetase from a deep-sea sediment metagenomic library. Appl Microbiol Biotechnol. 2013.
    [3] Tseng WC, Fang TY, Cho CY, Chen PS, Tsai CS. Assessments of growth conditions on the production of cyanophycin by recombinant Escherichia coli strains expressing cyanophycin synthetase gene. Biotechnol Prog. 2012;28:358-63.
    [4] Sallam A, Steinbuchel A. Dipeptides in nutrition and therapy: cyanophycin-derived dipeptides as natural alternatives and their biotechnological production. Appl Microbiol Biotechnol. 2010;87:815-28.
    [5] Sallam A, Kast A, Przybilla S, Meiswinkel T, Steinbuchel A. Biotechnological process for production of beta-dipeptides from cyanophycin on a technical scale and its optimization. Appl Environ Microbiol. 2009;75:29-38.
    [6] Oppermann-Sanio FB, Steinbuchel A. Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften. 2002;89:11-22.
    [7] Steinle A, Bergander K, Steinbuchel A. Metabolic engineering of Saccharomyces cerevisiae for production of novel cyanophycins with an extended range of constituent amino acids. Appl Environ Microbiol. 2009;75:3437-46.
    [8] Glansdorff N, Xu Y. Microbial arginine biosynthesis: pathway, regulation and industrial production. In: Wendisch V, editor. Amino Acid Biosynthesis ~ Pathways, Regulation and Metabolic Engineering: Springer Berlin Heidelberg; 2007. p. 219-57.
    [9] Arai T, Kino K. A cyanophycin synthetase from Thermosynechococcus elongatus BP-1 catalyzes primer-independent cyanophycin synthesis. Appl Microbiol Biotechnol. 2008;81:69-78.
    [10] Neumann K, Stephan DP, Ziegler K, Huhns M, Broer I, Lockau W, et al. Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. Plant Biotechnol J. 2005;3:249-58.
    [11] Locher CP, Putnam D, Langer R, Witt SA, Ashlock BM, Levy JA. Enhancement of a human immunodeficiency virus env DNA vaccine using a novel polycationic nanoparticle formulation. Immunol Lett. 2003;90:67-70.
    [12] Wong SY, Pelet JM, Putnam D. Polymer systems for gene delivery—Past, present, and future. Prog Polym Sci. 2007;32:799-837.
    [13] Boeckle S, Wagner E. Optimizing targeted gene delivery: chemical modification of viral vectors and synthesis of artificial virus vector systems. AAPS J. 2006;8:E731-42.
    [14] McTaggart S, Al-Rubeai M. Retroviral vectors for human gene delivery. Biotechnol Adv. 2002;20:1-31.
    [15] Benihoud K, Yeh P, Perricaudet M. Adenovirus vectors for gene delivery. Curr Opin Biotechnol. 1999;10:440-7.
    [16] Reddy JA, Clapp DW, Low PS. Retargeting of viral vectors to the folate receptor endocytic pathway. J Control Release. 2001;74:77-82.
    [17] Summerford C, Samulski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol. 1998;72:1438-45.
    [18] Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther. 2002;9:1647-52.
    [19] Federico C, Morittu VM, Britti D, Trapasso E, Cosco D. Gemcitabine-loaded liposomes: rationale, potentialities and future perspectives. Int J Nanomedicine. 2012;7:5423-36.
    [20] Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its role in gene delivery. J Control Release. 1999;60:149-60.
    [21] Ferrari S, Pettenazzo A, Garbati N, Zacchello F, Behr JP, Scarpa M. Polyethylenimine shows properties of interest for cystic fibrosis gene therapy. Biochim Biophys Acta. 1999;1447:219-25.
    [22] Kabanov AV. Taking polycation gene delivery systems from in vitro to in vivo. Pharm Sci Technolo Today. 1999;2:365-72.
    [23] Kircheis R, Wightman L, Wagner E. Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev. 2001;53:341-58.
    [24] Gosselin MA, Guo W, Lee RJ. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug Chem. 2001;12:989-94.
    [25] Zhao Y, Yang R, Liu D, Sun M, Zhou L, Wang Z, et al. Starburst low-molecular weight polyethylenimine for efficient gene delivery. J Biomed Mater Res A. 2012;100:134-40.
    [26] Ulubayram K, Aksu E, Gurhan SI, Serbetci K, Hasirci N. Cytotoxicity evaluation of gelatin sponges prepared with different cross-linking agents. J Biomater Sci Polym Ed. 2002;13:1203-19.
    [27] Digenis GA, Gold TB, Shah VP. Cross-linking of gelatin capsules and its relevance to their in vitro-in vivo performance. J Pharm Sci. 1994;83:915-21.
    [28] Cortesi R, Nastruzzi C, Davis SS. Sugar cross-linked gelatin for controlled release: microspheres and disks. Biomaterials. 1998;19:1641-9.
    [29] Mi FL. Synthesis and characterization of a novel chitosan-gelatin bioconjugate with fluorescence emission. Biomacromolecules. 2005;6:975-87.
    [30] Song F, Zhang LM, Yang C, Yan L. Genipin-crosslinked casein hydrogels for controlled drug delivery. Int J Pharm. 2009;373:41-7.
    [31] Peng L, Wang B, Ren P. Reduction of MTT by flavonoids in the absence of cells. Colloids Surf B Biointerfaces. 2005;45:108-11.
    [32] www.thermoscientific.com/pierce.
    [33] Dihazi GH, Sinz A. Mapping low-resolution three-dimensional protein structures using chemical cross-linking and Fourier transform ion-cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom. 2003;17:2005-14.
    [34] Talaro KP. Foundations in Microbiology Basic Principles 6th edition. McGrow-Hill, NY. 2008:294.

    無法下載圖示 全文公開日期 2018/07/30 (校內網路)
    全文公開日期 2043/07/30 (校外網路)
    全文公開日期 2043/07/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE