簡易檢索 / 詳目顯示

研究生: 楊佳琦
Rica - Amelia
論文名稱: 含圍束繫桿填充型箱型柱之撓曲行為
Flexural Behavior of Concrete-Filled Steel Box Column with Tie Rods
指導教授: 陳正誠
Cheng-Cheng Chen
口試委員: 陳生金
Sheng-Jin Chen
李台光
Tai-Kuang Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 117
中文關鍵詞: 填充型箱型柱箱型柱鋼管混凝土柱填充型複合構件韌性增強
外文關鍵詞: concrete-filled box column, box column, concrete-filled tube, filled composite member, ductility enhancement
相關次數: 點閱:230下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究共有九支填充型箱型柱試體,在高軸力作用下進行反覆載重試驗以研究其耐震行為。其中六支試體加裝圍束繫桿來增強柱的韌性。此研究主要在探討高軸力對彎矩強度和撓曲韌性的影響。此研究使用ASTM A572 Gr. 50鋼材以及標稱抗壓強度420 kgf/cm2的混凝土來製作試體,從測試結果顯示當作用於柱之軸力增加至軸向標稱強度的40%時,依照國內SRC規範對填充型箱型柱寬厚比規定的上限來製作填充型箱型柱,會造成填充型箱型柱撓曲韌性不足。使用經過良好設計的圍束繫桿可以有效地提升填充型箱型柱的彎矩容量、塑性轉角容量、韌性和消能能力。本研究更建議出圍束繫桿的設計方法,此方法可以讓圍束繫桿對填充型箱型柱塑鉸區之混凝土提供足夠的圍束力。


In this study, a total of nine large scale concrete-filled box column (CFBC) specimens were tested under cyclic loading to study their seismic behavior. Among the nine specimens, six of them were facilitated with tie rods to enhance the ductility of the columns. The influence of high axial load to the flexural strength and ductility was studied. ASTM A572 Gr. 50 steel and concrete with specified compressive strength of 420 kgf/cm2 were used to fabricate the specimens. Test results showed that the width-to-thickness ratio requirement in the building code may result in insufficient ductility of CFBC columns when axial load applied to the column reaches 40% of the nominal axial strength of the column. Use of properly arranged tie rods is proved to be able to enhance moment capacity, plastic hinge rotation capacity, ductility, and energy dissipation of the CFBCs. A design method of tie rods to provide sufficient confining effect to the CFBC in plastic hinge zone was proposed.

Abstract ............................................................. i Acknowledgement ...................................................... ii Table of content ..................................................... iii List of tables ....................................................... v List of figures ...................................................... vi Notations ............................................................ x Chapter 1 INTRODUCTION ............................................... 1 1.1 Background ................................................... 1 1.2 Literature review and previous research ...................... 2 1.3 Objectives and scopes ........................................ 5 1.4 Outline ...................................................... 6 Chapter 2 EXPERIMENTAL PROGRAM ....................................... 7 2.1 Design of test specimens ......................................... 7 2.2 Material properties .............................................. 8 2.3 Fabrication of specimen .......................................... 9 2.4 Instrumentation .................................................. 10 2.5 Test setup ....................................................... 11 2.6 Test procedure ................................................... 12 Chapter 3 TEST RESULTS ............................................... 13 3.1 General behaviors of test specimens .............................. 13 3.1.1 R-series ....................................................... 13 3.1.2 T48-series ..................................................... 15 3.1.3 T40-series ..................................................... 16 3.2 Moment capacity .................................................. 18 3.3 Plastic hinge rotation capacity .................................. 18 3.4 Ductility ratio .................................................. 20 3.5 Energy dissipation ............................................... 20 3.6 Confining stress provided by tie rods ............................ 21 3.6.1 Design process of tie rods ..................................... 21 3.6.2 Required confining stress provided by tie rods ................. 22 3.6.3 Proposed design method for tie rods ............................ 23 3.6.4 Experimental confining stress provided by tie rods ............. 24 Chapter 4 CONCLUSIONS AND SUGGESTIONS ................................ 25 4.1 Conclusions ...................................................... 25 4.2 Suggestions ...................................................... 27 References ........................................................... 29 Appendix A ........................................................... 95

[1] Hu, H.-T., Huang, C.-S., Wu, M.-H., and Wu, Y.-M., “Nonlinear Analysis of Axially Loaded Concrete-Filled Tube Columns with Confinement Effect”, Journal of Structural Engineering, vol. 129, pp. 1322-1329 (2003).
[2] Schneider, S. P., “Axially Loaded Concrete-Filled Steel Tubes”, Journal of Structural Engineering, vol. 124, pp. 1125-1138 (1998).
[3] Hajjar, J. F., “Concrete-filled steel tube columns under earthquake loads”, Progress in Structural Engineering and Materials, vol. 2, pp. 72-81 (2000).
[4] Guo, L., Zhang, S., Kim, W.-J., and Ranzi, G., “Behavior of square hollow steel tubes and steel tubes filled with concrete”, Thin-Walled Structures, vol. 45, pp. 961-973 (2007).
[5] Huang, C. S., Yeh, Y. K., Liu, G. Y., Hu, H. T., Tsai, K. C., Weng, Y. T., Wang, S. H., and Wu, M. H., “Axial Load Behavior of Stiffened Concrete-Filled Steel Columns”, Journal of Structural Engineering, vol. 128, pp. 1222-1230 (2002).
[6] Usami, T., and Ge, H., “Strength of Concrete-Filled Thin-Walled Steel Box Columns: Experiment”, Journal of Structural Engineering, vol. 118, pp. 3036-3054 (1992).
[7] Usami, T., and Ge, H., “Ductility of Concrete-Filled Steel Box Columns under Cyclic Loading”, Journal of Structural Engineering, vol. 120, pp. 2021-2040 (1994).
[8] Xiao, Y., He, W., and Choi, K.-k., “Confined Concrete-Filled Tubular Columns”, Journal of Structural Engineering, vol. 131, pp. 488-497 (2005).
[9] Hsu, H. L., and Yu, H. L., “Seismic performance of concrete-filled tubes with restrained plastic hinge zones”, Journal of Constructional Steel Research, vol. 59, pp. 587-608 (2003).
[10] 陳正誠、黃國倫,「含高強度混凝土箱型鋼柱之軸向受力行為研究」,內政部建築研究所委託研究報告,GRB編號:PG9702-0298,內政部研考資訊系統計畫編號:097301070000G1017,臺北,臺灣 (2008)。
[11] Chuang, Y.-C., “Flexural Ductile Behavior of Concrete Filled Box Columns with Tie Rods”, Master Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan (2010).
[12] Sudarmadji, Y., “Flexural Behavior of High Strength Concrete-Filled Steel Box Columns”, Master Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan (2011).
[13] 陶其駿、蔡煒銘,「在不同軸力下填充混凝土箱型鋼柱之撓曲行為研究(1/2)」,內政部建築研究所自行研究報告,內政部研考資訊系統計畫編號: 099301070000G2035,內政部建築研究所,臺北,臺灣 (2010)。
[14] 內政部營建署,「鋼骨鋼筋混凝土構造設計規範與解說」(2006)。
[15] AISC, “Seismic Provisions for Structural Steel Buildings”, American Institute of Steel Construction, Inc. (2010).
[16] 陳正誠、黃國倫,「含繫桿填充型箱型柱高軸力下之撓曲行為與設計」,內政部建築研究所委託研究報告,GRB編號:PG10001-0230,內政部研考資訊系統計畫編號:100301070000G1025,臺北,臺灣 ( 2011)。

QR CODE