簡易檢索 / 詳目顯示

研究生: 林東一
Lin Tung-I
論文名稱: 鐵-21錳-0.5碳合金之麻田散體相變化研究
A study of martensitic transformation in a Fe-21Mn-0.5C alloy
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 雷添壽
Tien-Shou Lei
王朝正
Chaur-Jeng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 114
中文關鍵詞: 麻田散體HCP條狀析出物
外文關鍵詞: martensite, HCP precipitate
相關次數: 點閱:129下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究的合金成分為鐵-21.1錳-0.5碳的高錳鋼。論文主題為探討此高錳鋼於高溫熱處理後所產生的麻田散體相變化情形。合金的處理流程分為:熱鍛、冷軋、高溫熱處理及低溫時效等。
    合金於1350℃至1050℃進行高溫熱處理後,經淬水或空冷方式冷卻至室溫,其合金的金相組成為FCC相及FCC晶粒內有雙晶及條狀析出物產生。此條狀析出物為具有六方晶系的結晶結構,此為首次發現之結晶相,其晶格常數為a=0.2544 nm及c=0.4079 nm。析出物於基地相中析出時,其與基材具有至少兩種的方位關係;若下標F代表FCC基材,而H代表析出物,其方位關係分別是:[111]F // [0001]H,(220)F // (11 0)H;以及[ ]F // [0001]H,(220)F // (11 0)H及(311)F // (1 00)H。
    合金於1350℃在不同氣氛下進行熱處理時,其金相組織有極大的差異。於氬氣保護下的試片,其於基地相晶粒中有上述的HCP條狀析出物產生,而於空氣中進行熱處理的試片,觀察到平板狀析出物,此平板狀析出物為ε麻田散體。經成分分析後,發現在空氣中進行熱處理的試片,其碳含量是大量的減少。故判定ε麻田散體形成的沃斯田體基地碳含量較HCP條狀析出物的沃斯田體基地為少。


    The thesis was to study the martensitic phase transformation of a Fe-21.1wt%Mn-0.5wt%C alloy after being cooled from high temperatures. Several different heat treatments were imposed on the alloy. These included heating to temperatures from 1350℃ to 1050℃, and holding for periods of either 30 min or 1 h. Samples were also cooled from those temperatures by quenching into water at room temperature or air-cooling.
    Lots of precipitates with the wicker shapes distributed in FCC grains uniformly after the specimens were cooled from high temperatures. We observed the precipitates having the characteristics of martensite. The precipitate is HCP with which lattice constants are a = 0.2544 nm and c = 0.4079 nm. It is the first time that a new HCP phase formed in the Fe-Mnl-C alloy was observed. In addition, there are two sets of orientation relationships between the HCP precipitate and FCC matrix. One is [111]F// [0001]H, (220)F//( )H, and the other is [ ]F// [0001]H, (220)F//( )H, (311)F//( )H, where F stands for FCC matrix and H for the HCP precipitate. Two sets of orientation relationships are quite unusual for the formation of a precipitation from the matrix.
    The specimen heated at 1350℃ in the air, followed by the same cooling method as above. In stead of HCP precipitates, εmartensite distributed uniformly throughout the FCC matrix. We foundεmartensite forms at the condition that the alloy was with low carbon content.

    目 錄 第一章 前言.....................................................1 第二章 文獻回顧.................................................9 2.1 雙晶變態................................................9 2.2 碳鋼中的麻田散體相變態...............................10 2.3 鎳鉻型不銹鋼之麻田散體相變態........................12 2.4 鐵錳鋁合金之麻田散體相變態..........................13 2.5 鐵錳碳合金之麻田散體相變態..........................14 2.5.1 γ→ε麻田散體相變化............................15 2.5.2 ε→α’麻田散體相變化.........................15 第三章 實驗方法................................................28 3.1 合金配製................................................28 3.2 合金的熱鍛及冷軋......................................29 3.3 熱處理條件.............................................29 3.4 試片製作................................................30 3.5 實驗設備................................................33 第四章 結果與討論.............................................40 4.1 熱鍛的試片..............................................40 4.2 高溫熱處理..............................................41 4.3 低溫時效處理............................................51 第五章 結論...................................................100 參考文獻........................................................102 附錄.............................................................104

    參考文獻

    1. T. Takahashi, W.A. Bessett, Science Mag.145, 483(1964).
    2. E.C. Bain and H.W. Paxton, “Alloy elements in steel” .
    3. D. William, J.R. Callister, Mat. Sci. and Eng. an Introduction, 5/e, 2000.
    4. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2/e, 2001.
    5. L. Remy, Acta Metall.Mater.25, 173(1977).
    6. Z. Nishiyama, M. Oka, H. Nakagawa, Trans. JIM 6, 88(1965).
    7. W.N. Roberts, Trans. AIME 230, 372(1964).
    8. K.S. Raghavan, A.S. Sastri, M.J. Marcinkowski, Met. Mater. Trans. A245, 1569(1969).
    9. 劉禎祥、蔡全華,“鑄鋼實務”,中華民國鑄造學會,技術資料NO.169(1991)。
    10. J.M. Plletier, F. Oucherif, P. Sallamand, A.B. Vannes, Met. Mater. Trans. A202, 142(1995).
    11. 劉嵩俊,“耐磨鋼鐵鑄造”,中華民國鑄造學會,技術資料NO.185(1995)。
    12. B.K. Zuidema, D.K. Subramanyam, W.C. Leslie, Met. Trans. A18, 1629(1987).
    13. Z. Nishiyama, “Martensitic Transformation” , (1978).
    14. 游智鈞,“鐵-21錳-0.4碳合金之相變化研究”,國立台灣科技大
    學,碩士論文(2007)。
    15. E. Robert, Phys. Met. Principles, 3/e (2002).
    16. D. Peckner, Handbook of Stainless Steel.
    17. G.B. Olson and M. Cohen, Met. Trans. A, Vol. 6A, pp.791-795(1975).
    18. J. Dash and H. M. Otte, Acta Metal. 11, pp.1169(1963).
    19. K.H. Hwang, C.M. Wang, and J.G Byrne, Mat. Sci. and Eng. , A132 pp.161-169(1991).
    20. W.C. Cheng, C.F. Liu, Y.F. Lai, Scripta Materialia 48, pp.295-300 (2003).
    21. T.B. Massalski, “Binary alloy phase diagrams”.
    22. P. Villars, A. Prince, and H. Okamoto, “ Handbook of ternary alloy phase diagrams”.
    23. P.M. Kelly, Acta met. 13 (1965), 635.
    24. P.L. Mangonon, JR. Nad Gareth Thomas, Metallurgical Transactions, 1, (1970), 1577.
    25. Y. Tomota, M. Strum and J.W. Morris Or., Metall. Trans. , 19A, 1563 (1988).
    26. K. P. Staudhammer, L.E. Murr and S.S. Hecker, Acta Metall. , 31, 267(1983).
    27. J.C. Kim, D.W. Han, S.H. Bail and Y.K. Lee, Mat. Sci. and Eng. , A378 pp.323-327(2004).
    28. 汪健民,“材料分析”,中國材料科學學會(1988)。
    29. D.B. Williams and C.B. Carter, “Transmission Electron Microscopy” , Plenum (1996).
    30. 陳力俊等,“材料電子顯微鏡學”,國科會精儀中心(1997)。

    無法下載圖示 全文公開日期 2012/07/03 (校內網路)
    全文公開日期 2037/07/03 (校外網路)
    全文公開日期 2037/07/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE