簡易檢索 / 詳目顯示

研究生: 李祁峻
CHYI-JIUNN LEE
論文名稱: 不同負載情境下之全橋 LLC 諧振轉換器最佳化設計
Optimization Design of Full Bridge LLC Resonant Converter Under Multiple Load Scenarios
指導教授: 劉益華
Yi-Hua Liu
口試委員: 鄧人豪
Jen-Hao Teng
邱煌仁
Huang-Jan Chiu
王順忠
Shun-Chung Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 89
中文關鍵詞: LLC諧振轉換器零電壓切換效率最佳化
外文關鍵詞: LLC resonant converter, zero voltage switching, efficiency optimization
相關次數: 點閱:896下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

過去幾十年來,LLC諧振轉換器的設計流程都是以基本波近似(First Harmonic Approximation, FHA)為依據,當切換頻率越接近諧振頻率時,諧振槽電流波形就越接近基本波,當切換頻率距離諧振頻率越遠,FHA對諧振槽電流與電壓增益的估測就會越不準,許多文獻提出之設計流程,皆是以能夠提供所需電壓增益與負載電流為目標,對於效率之探討並不深入,或者直接將滿載操作頻率設計於諧振頻率之上,或許此設計方法於單一負載有不錯的效率表現,但LLC諧振轉換器往往不會長時間運作於滿載狀態,因此,本文提出針對多重負載情境,並以提高總體效率為目標之設計方法。
為此本文提出以時域分析(Time-Domain Analysis, TDA)為基礎的設計方式,精準地算出每組諧振槽在不同負載情況下的電流波形,根據損耗模型估算出損耗,並使用粒子群演算法(Particle Swarm Optimization, PSO)來尋找綜合效率最高的諧振槽參數值。本文將提出之設計方式與傳統FHA之設計方式做比較,並實現1kW 全橋LLC諧振轉換器,經實際量測,於滿載時,本文提出之設計效率為96%,傳統FHA之設計方式效率為94.3%,於最輕載時,本文提出之設計效率為94.33%,傳統FHA之設計方式效率為90.83%,比較綜合效率,本文為95.81%,傳統FHA之設計方式為93.91%。


In the past decades, the design process of LLC resonant converters has been primarily based on First Harmonic Approximation (FHA) method. When the switching frequency is near the resonance frequency, the current waveform of the resonant tank gets closer to the first harmonic. If the switching frequency is far from the resonance frequency, the estimation of FHA to the resonance tank current and voltage gain will become inaccurate. Many proposed design processes aimed to provide the needed voltage gain and load current; however, the discussion regarding the efficiency is not in-depth, or the full-load operating frequency is designed the same as the resonance frequency. Perhaps this design method could have satisfactory efficiency performance for a single load, but the LLC resonant converters are not often operated at full load for a long time. Therefore, this study proposes a design method to enhance the overall efficiency in multiple load scenarios.
For this reason, the proposed design method is based on Time-Domain Analysis (TDA), which accurately calculates the current waveform of each group of resonant tanks under different load conditions. Besides, the loss can be calculated according to the loss model. In this thesis, Particle Swarm Optimization (PSO) method is utilized to find the parameter value of the resonance tank with the highest overall efficiency. This study compares the proposed design method with the conventional FHA design method and implements a 1kW full-bridge LLC resonant converter. From the measured results, the efficiency of the proposed and conventional FHA design methods is 96% and 94.3% at full load. When working at the 140W load, the efficiency of the proposed and FHA design methods is 94.33% and 90.83%, respectively. In terms of the overall efficiency, the proposed design method is 95.81%, while the FHA design method is 93.91%.

摘要 I Abstract II 目錄 III 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 1 1.3 論文大綱 3 第二章 全橋LLC 諧振轉換器操作模式分析 5 2.1 低於諧振頻率之不連續導通模式 (電感性) 5 2.2 低於或高於諧振頻率之不連續導通模式 (電感性) 9 2.3 低於諧振頻率之連續導通模式 (電容性) 13 2.4 低於諧振頻率之不連續導通模式 (電容性) 14 2.5 高於諧振頻率之連續導通模式 (電感性) 15 2.6 高於諧振頻率之不連續導通模式 (電感性) 19 第三章 DCMBR與DCMABR電流分析 24 3.1 求解DCMBR初值 24 3.2 求解DCMABR初值 46 第四章 全橋LLC 諧振轉換器損耗分析 54 4.1 MOSFET損耗模型 55 4.1.1 MOSFET導通損耗 55 4.1.2 MOSFET切換損耗 55 4.2 諧振電感損耗模型 56 4.2.1 諧振電感銅損 56 4.2.2 諧振電感鐵損 56 4.3 諧振電容損耗模型 56 4.4 變壓器損耗模型 56 4.4.1 變壓器銅損 56 4.4.2 變壓器鐵損 57 4.5 整流二極體損耗模型 57 4.6 輸出電容損耗模型 57 第五章 最佳化實現方法 59 5.1 粒子群最佳化 59 5.2 適應值與最佳化目標 61 5.3 粒子解之空間 61 第六章 實驗結果與分析 64 6.1 電路規格與使用情境 64 6.2 MATLAB模擬波形驗證 65 6.3 最佳化結果 70 6.4 損失估算結果 70 6.5 實際電路規格與設備 74 6.6 實驗波形量測 75 6.7 實測效率 78 第七章 結論與未來展望 80 7.1 結論 80 7.2 未來展望 81 參考文獻 82

[1] R. Beiranvand, B. Rashidian, M. R. Zolghadri and S. M. H. Alavi, “A Design Procedure for Optimizing the LLC Resonant Converter as a Wide Output Range Voltage Source,” IEEE Transaction on Power Electronics, Vol. 27, No. 8, 2012, pp. 3749-3763.
[2] J. Deng, S. Li, S. Hu, C. C. Mi and R. Ma, “Design Methodology of LLC Resonant Converters for Electric Vehicle Battery Chargers,” IEEE Transaction on Vehicular Technology, Vol. 63, No. 4, 2014, pp. 1581-1592.
[3] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, “Optimizing the Normalized Dead-Time and Maximum Switching Frequency of a Wide-Adjustable-Range LLC Resonant Converter,” IEEE Transaction on Power Electronics, Vol. 26, No. 2, 2011, pp. 462-472.
[4] Infineon Technologies North America Corp, “Resonant LLC Converter: Operation and Design,” Application note, AN2012-09, 2012.
[5] H. Huang “Designing an LLC Resonant Half-Bridge Power Converter,” 2010 Texas Instruments Power Supply Design Seminar.
[6] Infineon Technologies North America Corp, “3300 W 52 V LLC with 600 V CoolMOS™ CFD7 and XMC™,” Application note, AN_1906_PL52_1906_094110, 2020.
[7] V. Suel and S. Kizir, “A Comprehensive Loss Analysis of Half-Bridge LLC Resonant Converter used in LED Street Lights,” 2019 1st Global Power, Energy and Communication Conference, 2019.
[8] C. H. Yang, T. J. Liang, K. H. Chen J. S. Li and J. S. Lee, “Loss Analysis of Half-Bridge LLC Resonant Converter,” 2013 1st International Future Energy Electronics Conference, 2013. pp. 155-160.
[9] Infineon Technologies North America Corp. “MOSFET Power Losses Calculation Using the DataSheet Parameters,” Application note, V1.1, 2012.
[10] E. F. S. Glitz, “Power Loss Estimation in LLC MOSFETs: A Time Interval Analysis,” The University of British Columbia, 2018.
[11] Toshiba Corp, “Power MOSFET Electrical Characteristics,” Application note, 2018.
[12] Y. Wei, Q. Luo, Z. Wang and H. A. Mantooth, “A Complete Step-by-Step Optimal Design for LLC Resonant Converter,” IEEE Transaction on Power Electronics, Vol. 36, No. 4, 2021, pp. 3674-3691.
[13] J. Liu, J. Zhang, T. Q. Zheng and J. Yang, “A Modified Gain Model and the Corresponding Design Method for an LLC Resonant Converter,” IEEE Transaction on Power Electronics, Vol. 32, No. 9, 2017, pp. 6716-6727.
[14] Z. Hu, L. Wang, H. Wang, Y. F. Liu and P. C. Sen, “An Accurate Design Algorithm for LLC Resonant Converters -PartⅠ,” IEEE Transaction on Power Electronics, Vol. 31, No. 8, 2016, pp. 5435-5447.
[15] Z. Hu, L. Wang, Y. Qiu, Y. F. Liu and P. C. Sen, “An Accurate Design Algorithm for LLC Resonant Converters -PartⅡ,” IEEE Transaction on Power Electronics, Vol. 31, No. 8, 2016, pp. 5448-5460.
[16] R. Yu, G. K. Y. Ho, B M. H. Pong, B. W. K. Ling and J. Lam, “Computer-Aided Design and Optimization of High-Efficiency LLC Series Resonant Converter,” IEEE Transaction on Power Electronics, Vol. 27, No. 7, 2012, pp. 3243-3256.
[17] X. Fang, H. Hu, Z. J. Shen and I. Bataresh, “Operation Mode Analysis and Peak Gain Approximation of the LLC Resonant Converter,” IEEE Transaction on Power Electronics, Vol. 27, No. 4, 2012, pp. 1985-1995.
[18] J. F. Lazar and R. Martinelli, “Steady-State Analysis of the LLC Series Resonant Converter,” APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181), 2001, pp. 728-735.
[19] H. S. Choi, “Design Consideration of Half-Bridge LLC Resonant Converter,” Fairchild Korea Semiconductor, Korea.
[20] C. Adragna, S. De Simone and C. Spini, “A Design Methodology for LLC Resonant Converters base on Inspection of Resonant Tank Currents,” 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, 2008, pp.1361-1367.
[21] T.Liu, Z. Zhou, A. Xiong, J. Zeng and J. Ying, “A Novel Precise Design Method for LLC Series Resonant Converter,” INTELEC 06 - Twenty-Eighth International Telecommunications Energy Conference, 2006.
[22] P. L. Dowell, “Effect of eddy currents in transformer windings,” IEE Proc, vol. 113, no. 8, 1966, pp. 1387–1394.
[23] J. A. Ferreira, “Improved analytical modeling of conductive losses in magnetic components,” IEEE Trans. Power Electron, vol. 9, no. 1, 1994, pp. 127– 131.
[24] 謝士弘,「LLC 半橋串聯諧振式轉換器之設計考量與研製」,國立臺灣科技大學電機工程系碩士論文,2007年。
[25] 邱奕勳,「電池充電用數位控制LLC 諧振轉換器設計與研製」,國立臺灣科技大學電機工程系碩士論文,2012年。
[26] 陳揚斌,「高效率LLC 同步整流串聯諧振轉換器之研製」,國立臺灣科技大學電機工程系碩士論文,2009年。
[27] 曾建銘,「基於最佳化軌跡控制之全橋LLC 諧振轉換器輕載效率改善技術」,國立臺灣科技大學電機工程系碩士論文,2020年。
[28] 陳冠炷,「基於灰狼演算法之最佳化鋰離子電池充電電流樣式搜尋」,國立臺灣科技大學電機工程系碩士論文,2021年。

無法下載圖示 全文公開日期 2024/08/15 (校內網路)
全文公開日期 2024/08/15 (校外網路)
全文公開日期 2024/08/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE