簡易檢索 / 詳目顯示

研究生: 林延穎
Yen-ying Lin
論文名稱: 面板陣列廠蝕刻區之自動化物料搬運系統模擬研究
Simulation Study of Automated Material Handling System in the Etching Area of Panel Array Process
指導教授: 王福琨
Fu-kwun Wang
口試委員: 羅士哲
Shih-che Lo
吳政鴻
none
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 77
中文關鍵詞: 面板陣列廠自動化物料搬運系統系統模擬eM-Plant
外文關鍵詞: Panel array factory, Automated Material Handling System (AMHS), System simulation, eM-Plant
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

面板廠為了達到最具經濟效益的切割,玻璃基板往大尺寸發展是未來之趨勢,然而面板尺寸增加伴隨重量也變大,不論在機台設計或載具搬運上都受此影響,玻璃基板的搬運形成一個重要課題,由於人工搬運已無法負擔工作需求,因此物料搬運一般是藉由自動化物料搬運系統(Automated Material Handling System)來完成,自動化搬運對於平面顯示器產業之量產技術相形關鍵。
本研究以國內某面板陣列廠蝕刻製程之自動化物料搬運系統作為研究對象,針對現況環境STKT(Stocker)內兩台Crane搬運系統的負載率存在著不平衡之情形,提出改善方案,先以UML(Unified Modeling Language)為基礎之物件導向,作為模擬模式發展之主要工具,利用eM-Plant模擬軟體進行模擬模式建構,藉由系統模擬的方式輔助規劃STKT Hand-Off的位置選定與區域調整,以使加工中心內Crane搬運系統之運載負荷能有效平衡。
模擬數據經實驗設計分析顯示,在STKT Crane搬運系統中,Hand-Off區域位址與卡匣來到率之間存在顯著的交互作用,因此本研究在不同環境下,探討不同Hand-Off位置的選定對搬運系統所造成的影響,透過系統模擬的回饋特性,規劃出一個合理的Hand-Off區域位址,將可有效平衡STKT內兩台Crane搬運負荷量,提昇整體搬運效能,對系統產出也有顯著提升,並利用中央合成設計法則(Central Composite Design Method),在搬運績效極值化的前提下,配置出STKT Crane搬運系統各項績效之迴歸模型,透過此評估方法,作為探討在不同環境下,預測不同Hand-Off設置區域對STKT Crane搬運系統之績效表現。


In order to get higher economic benefits, panel manufacturers are apt to make large-size glass substrates and by far it becomes a future tendency. Nevertheless, panel’s weight grows with its size and has affected bench design and transport carriers. Since transporting large-size glass substrates by manual handling can not meet the needs, this heavy task is now accomplished by an Automated Material Handling System (AMHS).
The research object is to study an AMHS handling etching processes in an array panel manufacturer located in Taiwan. To improve unbalanced loading rate existed in STKT (Stocker) crane transport system, object-oriented based Unified Modeling Language (UML) simulation models (eM-Plant) are applied. The simulation system assists planning STKT Hand-Off locations and adjusted areas, and the carrying capacity of the crane transport system in the machining center can be effectively balanced with its aid.
The result shows that while in STKT crane transport system, an apparent reciprocation can be found between Hand-Off area address and the coming rate of cassettes. Thus this study probes into different Hand-Off area selection in different environments to find out influences that the system causes, and by the feedback feature of the simulation system, a rational Hand-Off area address can be created to effectively balance the carrying capacity of the STKT crane transport system, enjoys better transport performance and doubles the output. On the premise of extreme transport performance, using Central Composite Design Method to dispose STKT Crane model on each performance of the transport system, and through this assess method to predict the systematic performance of STKT Crane transport system in different Hand-Off area addresses under different environments.

目錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1研究背景 1 1.2研究動機 2 1.3研究目的 3 1.4研究範圍與限制 3 1.5研究架構與流程 4 第二章 文獻探討 7 2.1 面板廠製程單元簡介 7 2.1.1 面板廠製造流程簡介 7 2.1.2 面板陣列(TFT Array)製程簡介 9 2.2 面板廠自動化物料搬運系統相關研究文獻整理 12 2.2.1 面板廠自動化物料搬運系統之演進 12 2.2.2 無人搬運車系統相關文獻 15 2.2.2.1 派車法則問題 16 2.2.2.2 車輛交通管理問題 19 2.2.2.3 績效分析問題 21 2.2.2.4 暫存區相關文獻研究 24 第三章 面板陣列廠自動化物料搬運系統模擬模式研究 25 3.1系統描述與問題定義 25 3.2模擬模式建構 29 3.3面板陣列廠自動化物料搬運系統模擬模式之建構 31 3.3.1起始階段 31 3.3.2分析階段 33 3.3.2.1 需求分析:使用案例圖 33 3.3.2.2 結構分析:類別圖 36 3.3.2.3 行為分析:循序圖 37 3.3.3設計階段 38 3.3.3.1 結構塑模:類別圖 38 3.3.3.2 行為塑模:循序圖 40 3.3.4實作階段 42 3.3.4.1模式架構之建立 42 3.3.4.2模擬模式之建立 44 第四章 實驗設計與分析 46 4.1環境因子 47 4.2控制因子 48 4.3績效指標 48 4.4實驗設計架構 48 4.5實驗分析步驟 49 4.6實驗結果分析 50 第五章 結論與建議 62 5.1 結論 62 5.2 未來研究方向 63 參考文獻 64

參考文獻
1.台灣經濟研究院產經資料庫,http://tie.tier.org.tw/tie/index.jsp。
2.呂博裕與王福琨,「晶圓製造廠自動化物料搬運與儲存系統之模擬分析」,工業工程學刊,第十六卷,第二期,頁183-194,1999。
3.林則孟,「系統模擬理論與應用」,滄海書局,2001。
4.周上傑,「晶圓廠自動化物料搬運系統之派車模擬研究」,清華大學工業工程研究所碩士論文,1999。
5.姜林杰佑、張逸輝、陳家明、黃佳祚編譯,「系統模擬eM-Plant(SiMPLE++)操作與實務」,華泰文化事業公司,2001。
6.郭曜賑,「UML為基礎之物件導向模擬模式發展程序方法論-晶圓廠自動物料搬運系統為例」,清華大學工業工程研究所碩士論文,1999。
7.陳紹偉,「12吋IC代工廠自動化物料搬運系統之系統模擬與派工法則的研究」,台灣大學機械工程研究所碩士論文,1999。
8.黃柏堅,「液晶面板廠機台與無人搬運車指派機制之設計」,交通大學工業工程與管理研究所碩士論文,2003。
9.游欽宏,「半導體與平面顯示器製造自動化技術」,機械月刊,第三十一卷,第十二期,2005。
10.劉書助、陳俊鴻、蕭榮興,「流程型生產系統下暫存區配置問題之研究」,中華管理評論,第二卷,第六期,頁59-73,1999。
11.顏柄榮,「半導體晶圓廠自動化物料搬運系統之模擬分析」,清華大學工業工程與工程管理所碩士論文,2000。
12.Cardarelli, G. and Marcello, P. M., (1995). “Simulation tool for design and management optimization of automated interbay material handling and storage systems for large wafer fab”, IEEE Transactions on Semiconductor Manufacturing, Vol.8, No.1, pp.44-49.
13.Cardarelli, G., Marcello, P. M., and Granito, A., (1996). “Performance analysis of automated interbay material handling and storage systems for large wafer fab”, Robotics and Computer-Integrated Manufacturing, Vol.12, No.3, pp.227-234.
14.Design-Expert, Version 5.0.8, Stat-Ease, Minneapolis, MN, 1997.
15.Egbelu, P. J. and Tanchoco, J. M. A., (1984). “Characterization of automatic guided vehicle dispatching rules”, International Journal of Production Research, Vol.22, No.3, pp.359-374.
16.Ganesharajah, T., Hall, N. G., and Sriskandarajah, C., (1998). “Design and operational issues in AGV-served manufacturing systems”, Annal of Operations Research, Vol.76, No.1, pp.109-154.
17.Garry, A. K., (1987). “Automatic guided vehicle systems:application, controls and planning”, Material Flow, Vol.4, No.1, pp.3-16.
18.Hwang, H. and Kim, S. H., (1998). “Development of dispatching rules for automated guided vehicle systems”, Journal of Manufacturing System, Vol.17, No.2, pp.137-143.
19.Jang, J., Suh, J., and Ferreira, P. M., (2001). “An AGV routing policy reflecting the current and future state of semiconductor and LCD production”, Journal of Production Research, Vol.39, No.17, pp.3901-3921.
20.Kim, S. H. and Hwang, H., (1999). “An adaptive dispatching algorithm for automated
guided vehicles based on an evolutionary process”, International Journal of Production Economics, Vol.60-61, No.1, pp.465-472.
21.Klein, C. M. and Kim, J., (1996). “AGV dispatching”, International Journal of Production Research, Vol.34, No.1, pp.95-110.
22.Kurosaki, R., Nagao, N., Komada, H., Watanable, Y., and Yano, H., (1997). “AMHS for 300mm wafer”, IEEE International Symposium on Semiconductor Manufacturing Conference, pp.D13-D16.
23.Mackulak, G. T., Lawrence, F. P., and Rayter J., (1998). “Simulation analysis of 300mm intrabay automation vehicle capacity alternatives”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp.445-450.
24.Meller, R. D., (1997). “The multi-bay manufacturing facility layout problem”,
International Journal of Production Research, Vol.35, No.5, pp.1229-1237.
25.Pierce, N. G. and Stafford R., (1994). “Modeling and simulation of material handling for semiconductor wafer fabrication”, Proceedings of the 1994 Winter Simulation Conference, pp.900-906.
26.Prasad, K. and Rangaswami, M., (1988). “Analysis of different AGV control systems in an integrated IC manufacturing facility, using computer simulation”, Production of the 1988 Winter Simulation Conference, pp.568-574.
27.Wang, F. K. and Lin, J. T., (2004). “Performance evaluation of an automated material handling system for a wafer fab”, Robotics and Computer-Integrated Manufacturing, Vol.20, No.2, pp.91-100.
Weiss, M., (1997). “300mm fab automation technology options and selection
criteria”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, pp373-379.
28.Weiss, M., (1999). “New twists on 300mm fab design and layout”, Semiconductor International, Vol.22, No.8, pp.103-4, 106, 108.
29.Yang, T. H., Lin, L. R., Hsu, K. H., and Chen, T., (1998). “Implementation experience of automated guided vehicle system in an IC foundry fab around SMIF
environment”, Semiconductor Manufacturing Technology Workshop, pp.182-186.
30.Yim, D. S. and Linn, R. J., (1993). “Push and pull rules for dispatching automated guided vehicles in a flexible manufacturing system”, Internal Journal of Production Research, Vol.31, No.1, pp.43-57.

無法下載圖示 全文公開日期 2013/07/03 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE