簡易檢索 / 詳目顯示

研究生: 何耳申
Arsenius - Marhendian
論文名稱: 利用金屬親合原理以聚乙二醇改質提昇聚乙烯亞胺載體穩定性
Improving polyethyleneimine stability as gene delivery vector by grafting polyethylene glycol using metal ion affinity principle
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 戴 龑
Yian Tai
朱義旭
Yi-Hsu Ju
曹恒光
Heng-Kwong Tsao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 78
中文關鍵詞: 聚乙烯亞胺穩定性基因傳遞載體聚乙二醇化金屬離子親合力
外文關鍵詞: polyethyleneimine stability, gene delivery vector, PEGylation, metal ion affinity
相關次數: 點閱:203下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

-not available-


Synthesis and characterization of a gene delivery system containing polyethyleneimine and polyethylene glycol was done. The synthesis consist of modification at the a and w termines of polyethylene glycol to obtain heterobifunctional PEG bearing a tertiaty butoxy carbonyl protected hydrazide group at the a terminus and nitrilotriacetic acid at the w terminus, while modification on polyethyleneimine was done to graft histidine residues to 5% of the total primary amine present. Characterizations were done to test the ability of the synthesized product to condense plasmid DNA (in case of polyethyleneimine) and to stabilize the formed polyethyleneimine/plasmid DNA complex (in case of polyethylene glycol). Parameters on success are particle size and the amount of DNA condensed.
Analysis by NMR shows peaks in accordance with the molecular formula on both products. Characterization result shows that the modified polyethyleneimine still retain its ability to form complex with plasmid DNA. The produced particle has an average size of 170.8 ±15.49 nm, slightly bigger than that of the unmodified counterpart. The addition of modified polyethylege glycol was shown to increase the stability of the formed complex towards competitors like bovine serum albumin or heparin. The improvement was achieved only when metal ions are chelated to the nitrilotriacetic acid end located in polyethylene glycol, suggesting the interaction happened was between histidine-metal ions-nitrilotriacetic acid. Results from cell viability assay show that the modified PEI has lower cytotoxicity compared to the unmodified one. Results also shows that by adding modified PEG the cell viability would further increase, indicating less cytotoxicity.

Page Abstract i Acknowledgement ii Table of contents iii List of figures v List of tables viii Chapter I Introduction 1 I.1 Gene delivery vectors 1 I.2 Scope of study 3 Chapter II Background 5 II.1 Polyethyleneimine 5 II.2 PEI mediated gene delivery 6 II.2.1 PEI – DNA complex 7 II.2.2 Extracellular barriers 9 II.2.3 Intracellular traffic 10 II.3 Gene delivery by modified PEI 12 II.3.1 Polyethylene glycol (PEG) 12 II.3.2 PEG in gene delivery 13 II.3.3 Strategies to conjugate PEG 14 Chapter III Materials and Methods 15 III.1 Materials 15 III.2 Equipments 17 III.3 Methods 17 III.3.1 Synthesis of N-N-Bis[carboxymethyl]- L-Lysine 18 III.3.2. Synthesis route to obtain heterobifunctional polyethylene glycol 19 III.3.3. Synthesis route to obtain histidine grafted polyethyleneimine 22 III.3.4. Metal chelation 25 III.3.5. Polymer/DNA formulation 25 III.3.6. Test on complex stability 26 III.3.7. Cytotoxicity test 26 Chapter IV Results and Discussions 28 IV.1 Results 28 IV.1.1 Results on the synthesis of metal chelator 28 IV.1.2 Results on the modification of PEG terminus 29 IV.1.3 Results on the grafting of histidine residue to Polyethyleneimine 31 IV.1.4. Results on the test of the synthesized materials 32 IV.2 Discussion 36 Chapter V Conclusion 38 References 39 Appendix A 42 Appendix B 56

1. Pack, D. W., Hoffman, A. S., Pun, S., and Stayton, P. S., Design and development of polymers for gene delivery, Nature Rev. Drug Disc., 4, 581-593 (2005)

2. Lukacs, G. L., Haggie, P., Seksek, O., et al., Size dependent DNA mobility in cytoplasm and nucleus, J. Biol. Chem., 275, 1625-1629 (2000)

3. Neu, M., Fischer, D., and Kissel, T., Recent advances in rational gene transfer vector design based on poly(ethyleneimine) and its derivatives, J. Gene Med., 7, 992-1009 (2005)

4. Felgner, P.L., Gadek, T. R., Holm, M., et al., Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure, Proc. Natl Acad Sci. USA, 84, 7413-7417 (1987)

5. http://www.wiley.co.uk/genmed/clinical. Accessed April 2007

6. Fillion, M. C., Mario C., and Phillips, N. C., Major limitation in the use of cationic liposomes for DNA delivery, Int. J. Pharm., 162, 159-170 (1998)

7. Boussif, O., Lezoualc'h, F., Zanta, M. A., et al., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine, Proc. Natl Acad Sci. USA, 92, 7297-7301 (1995)

8. Von Harpe, A., Petersen, H., Li, Y., and Kissel, T., Characterization of commercially available and synthesized polyethyleneimines for gene delivery, J. Controll Rel., 69, 309-322 (2000)

9. Jones, G. D., Langsjoen, A., Neumann, and M. M. C., Zomlefer, J., The polymerization of ethyleneimine, J. Org. Chem., 9, 125-147 (1944)

10. Brissault, B., Kichler, A., Guis, C., et al., Synthesis of linear polyethyleneimine derivatives for DNA transfection, Bioconjug. Chem., 14, 581-587 (2003)

11. Lungwitz, U., Breunig, M., Blunk, T., and Gopferich, A., Polyethylenimine-based non-viral gene delivery systems, Eur. J. Pharm. Biopharm., 60, 247-266 (2005)

12. Abdelhady, H. G., Allen, S., Davies, M. C., et al., Direct real-time molecular scale visualisation of the degradation of condensed DNA complexes exposed to DNase I, Nucleic Acid Res., 31, 4001-4005 (2003)

13. Van der Aa, M. A. E. M., Koning, G. A., d’Oliveira, C., et al., An NLS peptide covalently linked to linear DNA does not enhance transfection efficiency of cationic polymer based gene delivery systems, J. Gene Med., 7, 208-217 (2005)

14. Godbey, W. T., Wu, K. K. and Mikos, A. G., Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery, Proc. Natl Acad Sci. USA, 96, 5177-5181 (1999)

15. Zalipsky, S., Functional Poly(ethylene glycol) for preparation of Biological relevant conjugates, Bioconjugate Chem, 6, 150-165 (1995)

16. Zalipsky, S., Synthesis of end group functionalized polyethylene glycol-lipis conjugate for preparation of polymer-grafted liposomes, Bioconjugate Chem., 4, 296-299 (1993)

17. Kichler, A., Gene transfer with modified polyethylenimines, J. Gene Med., 6, S3-S10 (2004)

18. Schmitt, L., Dietrich, C., and Tampe, R., Synthesis and characterization of chelator-lipids for reversible immobilization of engineered proteins at self assembled lipid interfaces, J. Am. Chem. Soc., 116, 8485-8491 (1994)

19. Thomas, M., and Klibanov, V., Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells, Proc. Natl Acad Sci. USA, 99, 14640-14645 (2002)

20. Zalipsky, S. and Barany, G., Facile Synthesis of -Hydroxy--Carboxymethylpolyethylene Oxide, J. Bioact. Compatible Polym., 5, 227-231 (1986)

21. http://www.aist.go.jp/RIODB/SDBS/cgi-bin/direct_frame_top.cgi?lang=eng accessed March 2007.

22. Thomson, N. H., Smith, L. B., Almqvist, N., et al, Oriented, Active Escherichia coli RNA Polymerase: An Atomic Force Microscope Study, Biophys. J., 76, 1024–1033, (1999)

無法下載圖示 全文公開日期 2012/07/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE