簡易檢索 / 詳目顯示

研究生: 鄭鈞哲
Chun-Che Cheng
論文名稱: EVA/TPE發泡材物性影響效應之研究
The influence of cellular structure on physical performance of EVA/TPE blend foam
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
吳昌謀
Chang-Mou Wu
游進陽
Chin-Yang Yu
邱智瑋
Chih-Wei Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 122
中文關鍵詞: EVA發泡VA%SEBSPOE二段發泡複合膜發泡
外文關鍵詞: EVA, foaming, VA%, SEBS, POE, two-stage foaming, foaming of three-layer film
相關次數: 點閱:187下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討發泡劑不同、VA%高低、TPE之混摻以及不同加工工藝對EVA發泡之物性影響。發泡劑選用無機發泡母粒EE405F、有機發泡母粒7300以及有機發泡劑AC3000F;EVA選了VA26%與18%;TPE選用直鏈段的POE與本身即有部分物理交聯的SEBS進行物性之改良。使用微型混鍊機進行配方之混練,然後分別進行一次發泡、二段發泡和將配方投入押出機進行複合膜發泡。研究中採用TGA、DSC進行基材之熱性質分析,決定加工之溫度;利用微型混練機紀錄不同溫度膠料之黏度;使用SEM觀測發泡之孔洞型態;使用無轉子發泡流變儀分析發泡氣體壓力以及膠料交聯程度;對發泡後之樣品測試排水密度、抗拉強度、撕裂強度、壓縮永久變形、DMA等性質。
    結果發現發泡劑對於EVA發泡物性的影響,使用無機發泡劑可以有較優良之物性;VA%對物性之影響不明顯;TPE混入EVA發泡可提升整體物性,尤以SEBS添加效果更佳;不同的發泡工藝對於發泡材之物性影響不大,但可以用來調控發泡材之物性。


    The purpose of this study was to investigate the effects of different foaming agents, VA contents, TPE blending, and different processing methods on the physical properties of EVA foaming. We use foaming agent as follow: inorganic foam masterbatch-EE405F, organic foam masterbatch-7300, and organic foaming agent-AC3000F. We choose VA contents 18% and 26% of EVA. To Improve physical properties, we use two kinds of TPE. One is POE, which has straight chemical chain. And the other is SEBS, which has partially physically cross-linked. We use micro compounder to blend the sample, then put into molded foaming, two-stage foaming, or the extruder for foaming of three-layer film.
    To determine the temperature of processing and thermal properties analysis of substrates, we use TGA and DSC in the study. Record the viscosity at different temperatures when using the micro compounder. Use SEM to observe the shape of the cell. Use moving die (foam pressure) rheometer to analyze the pressure of foaming and the degree of crosslinking. Test the characteristics of density, tensile strength, tear strength, compression set, DMA, etc. after foaming.
    As a result, it was found that the effect of the foaming agent on the foaming properties of EVA can be improved by using an inorganic foaming agent. VA% doesn’t have obvious effect on physical properties. TPE blended with EVA foam can improve physical properties, especially with SEBS. Different foaming processes have little effect on the physical properties of EVA foam, but it can be used to control the physical properties of foamed materials.

    摘要 I Abstract II 致謝 IV 目錄 V 圖表索引 IX 第一章 緒論 1 1.1研究背景 1 1.2研究動機 3 1.3目標 4 第二章 文獻回顧 5 2.1塑膠發泡、發泡劑及EVA 5 2.1.1發泡種類 5 2.1.2發泡劑 6 2.1.2.1物理發泡劑 7 2.1.2.2化學發泡劑 8 2.1.3EVA 9 2.1.4SEBS 10 2.1.5POE 11 2.2塑料發泡 11 2.2.1流變學 12 2.2.2均質成核與異質成核 14 2.2.3發泡時氣泡的生長 16 2.3聚烯烴高分子發泡的交聯 17 2.3.1交聯 17 2.3.2交聯的特性 18 2.3.3聚烯烴發泡加工中的交聯 19 第三章 實驗 29 3.1 實驗架構 29 3.2 實驗材料與配方 30 3.2.1實驗材料 30 3.2.2實驗配方 31 3.3測試與分析 32 3.3.1樣品準備 32 3.3.1.1一次發泡與二段發泡 32 3.3.1.2三軸共押複合膜發泡 33 3.3.2熱重損失分析 Thermogravimetry Analysis(TGA) 33 3.3.3熱示差分析Differential Scanning Calorimetry(DSC) 34 3.3.4流變行為(Melting Viscosity) 34 3.3.5形態觀察 34 3.3.6發泡流變 35 3.3.7發泡後試片物性分析 35 3.3.7.1密度 35 3.3.6.2抗拉強度(Tensile Test) 35 3.3.6.3撕裂強度(Tearing Strength) 36 3.3.6.4壓縮永久變形率(Compression Set) 36 3.3.6.5黏彈性分析Viscoelastic analysis(DMA) 37 第四章 結果與討論 48 4.1熱性質分析 48 4.1.1熱裂解分析 48 4.1.2熱焓反應分析 49 4.2流變行為分析 50 4.3形態分析 50 4.4發泡流變分析 51 4.5發泡後物理性質分析 52 4.5.1發泡後試片密度 52 4.5.2抗拉強度測試 53 4.5.3撕裂強度測試 53 4.5.4壓縮永久變形率測試 54 4.5.5黏彈性分析 54 4.6二段發泡物性分析 55 4.7複合膜發泡物性分析 56 第五章 結論 91 參考文獻 92

    [1] L. J. Gibson and M. F. Ashby, Cellular solids: structure and properties: Cambridge university press, 1999.
    [2] S.-T. Lee and N. S. Ramesh, Polymeric foams: mechanisms and materials: CRC press, 2004.
    [3] S.-T. Lee, C. B. Park, and N. S. Ramesh, Polymeric foams: science and technology: CRC Press, 2006.
    [4] C. E. Carraher Jr, Seymour/Carraher's polymer chemistry: CRC Press, 2003.
    [5] M. Rodríguez-Pérez, "Crosslinked polyolefin foams: production, structure, properties, and applications," in Crosslinking in Materials Science, ed: Springer, 2005, pp. 97-126.
    [6] G. Holden, H. Kricheldorf, and R. Quirk, "Thermoplastic Elastomers, Cincinnati: Hanser, 2004.32," Handbook of Polymer Foams, D. Eaves, Ed., Rapra Technology Limited, Crewe, 2004.
    [7] D. Eaves, "Handbook of polymer foams," David E., Ed, pp. 1-8, 2004.
    [8] D. Klempner and V. Sendijarevic, "Polymeric foams and foam technology," 2nd. ed, 2004.
    [9] A. Osakada and M. Koyama, "Development of polyethylene foam by radiation crosslinking," Japan chemical quarterly, vol. 1, pp. 55-59, 1971.
    [10] C. B. Park and N. P. Suh, "Filamentary extrusion of microcellular polymers using a rapid decompressive element," Polymer Engineering & Science, vol. 36, pp. 34-48, 1996.
    [11] D. F. Baldwin, D. Tate, C. B. Park, S. W. Cha, and N. Suh, "Microcellular plastics processing technology (1)," Journal of Japan Society of Polymer Processing, vol. 6, pp. 245-256, 1994.
    [12] K. W. Suh, C. P. Park, M. J. Maurer, M. H. Tusim, R. D. Genova, R. Broos, et al., "Lightweight cellular plastics," Advanced Materials, vol. 12, pp. 1779-1789, 2000.
    [13] G. Li, Thermodynamic investigation of the solubility of physical blowing agents in polymer melts: ProQuest, 2007.
    [14] S. N. S. Leung, "Mechanisms of cell nucleation, growth, and coarsening in plastic foaming: theory, simulation, and experiment," 2009.
    [15] J. Wang, "Rheology of foaming polymers and its influence on microcellular processing," 2009.
    [16] 謙衡化工. (2017). 功能性複合材料在EVA鞋材上的應用. Available: https://mp.weixin.qq.com/s?__biz=MjM5NTc4NTIzMg==&mid=2659477001&idx=2&sn=1c260e343edf766a43bb716577f7adca&chksm=bd83f9768af470601aaf30867a0838a2f1ee42f15370894dd2687d08a80c548c11570b90a30d&scene=21#wechat_redirect
    [17] N. Chen, "The effects of crosslinking on foaming of EVA," 2012.
    [18] J. L. Throne, Thermoforming: Wiley Online Library, 2003.
    [19] A. H. Landrock, Handbook of plastic foams: types, properties, manufacture and applications: Elsevier, 1995.
    [20] M. Y. S. E.-S. Ahmed, Design and Manufacturing of Novel Microcellular Acoustical Foams: ProQuest, 2008.
    [21] U. N. E. Programme. (2018). United Nations Environment Programme Website. Available: https://unep.ch/ozone/pdf/montreal-protocol2000.pdf
    [22] G. Hayman, M. Jenkin, T. Murrells, and C. Johnson, "Trospospheric degradation chemistry of HCFC-123 (CF3CHCl2): A proposed replacement chlorofluorocarbon," Atmospheric Environment, vol. 28, pp. 421-437, 1994.
    [23] L. Zipfel, P. Barthtlemy, and P. Dournel, "The next generation blowing agents: from one single product to a product range," Journal of cellular plastics, vol. 35, pp. 345-364, 1999.
    [24] Y. Sato, T. Iketani, S. Takishima, and H. Masuoka, "Solubility of hydrofluorocarbon (HFC‐134a, HFC‐152a) and hydrochlorofluorocarbon (HCFC‐142b) blowing agents in polystyrene," Polymer Engineering & Science, vol. 40, pp. 1369-1375, 2000.
    [25] D. F. Baldwin, C. B. Park, and N. P. Suh, "An extrusion system for the processing of microcellular polymer sheets: Shaping and cell growth control," Polymer Engineering & Science, vol. 36, pp. 1425-1435, 1996.
    [26] S.-T. Lee and C. B. Park, Foam extrusion: principles and practice: CRC press, 2014.
    [27] C. B. Park, A. H. Behravesh, and R. D. Venter, "Low density microcellular foam processing in extrusion using CO2," Polymer Engineering & Science, vol. 38, pp. 1812-1823, 1998.
    [28] D. Pierick and R. Janisch, "Molding Technology: Introduction," in Applications and Advantages, Foaming Conference, RAPRA, Frankfurt, Germany, 2001.
    [29] J. K. Fink, A concise introduction to additives for thermoplastic polymers vol. 1: John Wiley & Sons, 2010.
    [30] G. Chemicals. (2010). Actafoam® and Celogen® Chemical Foaming Agents General Properties Guide. Available: http://www.galatachemicals.com/pdf/Galata%20CFA%20Properties%20Guide.pdf
    [31] G. Holden, H. R. Kricheldorf, and R. P. Quirk, Thermoplastic elastomers vol. 133: Hanser Munich, 2004.
    [32] A. M. Henderson, "Ethylene-vinyl acetate (EVA) copolymers: a general review," IEEE Electrical Insulation Magazine, vol. 9, pp. 30-38, 1993.
    [33] 智昱股份有限公司. (2018). SEBS. Available: http://www.ppsolutions.com.tw/chinese/sebs/
    [34] T. D. C. Company. (2018). ENGAGE™ Polyolefin Elastomers. Available: https://www.dow.com/elastomers/products/engage.htm
    [35] C. B. Park, D. F. Baldwin, and N. P. Suh, "Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers," Polymer Engineering & Science, vol. 35, pp. 432-440, 1995.
    [36] R. Puri and K. Collington, "The Production of Cellular Crosslinked Polyolefins. II. The Injection Moulding and Press Moulding Techniques," Cell. Polym., vol. 7, pp. 219-231, 1988.
    [37] S. Kim, C. Park, B. Kang, and M. Sain, "Foamability of thermoplastic vulcanizates (TPVs) with carbon dioxide and nitrogen," Cellular polymers, vol. 25, pp. 19-33, 2006.
    [38] C. Wang, M. Bussmann, and C. Park, "Numerical investigation of the effect of screw geometry on the mixing of a viscous polymer melt," Journal of Applied Polymer Science, vol. 117, pp. 775-784, 2010.
    [39] J. Wang and C. B. Park, "Pressure profile in annular die using PP/CO2 solution viscosity," Cellular Polymers, vol. 27, p. 147, 2008.
    [40] J. W. Lee, J. Wang, J. D. Yoon, and C. B. Park, "Strategies to achieve a uniform cell structure with a high void fraction in advanced structural foam molding," Industrial & Engineering Chemistry Research, vol. 47, pp. 9457-9464, 2008.
    [41] C. P. Parky and G. A. Garcia, "Development of polypropylene plank foam products," Journal of cellular plastics, vol. 38, pp. 219-228, 2002.
    [42] A. Moris and D. C. D., "A study of the dynamics of foam growth: Analysis of the growth of closely spaced spherical bubbles," Polymer Engineering & Science, vol. 24, pp. 1026-1034, 1984.
    [43] M. Amon and C. D. Denson, "A study of the dynamics of foam growth: Simplified analysis and experimental results for bulk density in structural foam molding," Polymer Engineering & Science, vol. 26, pp. 255-267, 1986.
    [44] A. Arefmanesh and S. Advani, "Diffusion-induced growth of a gas bubble in a viscoelastic fluid," Rheologica Acta, vol. 30, pp. 274-283, 1991.
    [45] N. Ramesh, D. H. Rasmussen, and G. A. Campbell, "Numerical and experimental studies of bubble growth during the microcellular foaming process," Polymer Engineering & Science, vol. 31, pp. 1657-1664, 1991.
    [46] D. C. Venerus, N. Yala, and B. Bernstein, "Analysis of diffusion-induced bubble growth in viscoelastic liquids," Journal of Non-Newtonian Fluid Mechanics, vol. 75, pp. 55-75, 1998.
    [47] D. C. Venerus, "Diffusion‐induced bubble growth in viscous liquids of finite and infinite extent," Polymer Engineering & Science, vol. 41, pp. 1390-1398, 2001.
    [48] M. Yamaguchi, "Foaming of Novel Linear Polyethylene with Enhanced Melt Elasticity," in Proceedings of the Annual Meeting of the Society of Polymer Proceeding, Melbourne, 2003.
    [49] C. B. Park, L. Yuejian, and H. E. Naguib, "Challenge to forty-fold expansion of biodegradable polyester foams using carbon dioxide as a blowing agent," Cellular polymers, vol. 18, pp. 367-384, 1999.
    [50] H. E. Naguib, C. B. Park, U. Panzer, and N. Reichelt, "Strategies for achieving ultra low‐density polypropylene foams," Polymer Engineering & Science, vol. 42, pp. 1481-1492, 2002.
    [51] W. Zhai, J. Wang, N. Chen, H. E. Naguib, and C. B. Park, "The orientation of carbon nanotubes in poly (ethylene‐co‐octene) microcellular foaming and its suppression effect on cell coalescence," Polymer Engineering & Science, vol. 52, pp. 2078-2089, 2012.
    [52] M. Okamoto, P. H. Nam, P. Maiti, T. Kotaka, T. Nakayama, M. Takada, et al., "Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite foam," Nano letters, vol. 1, pp. 503-505, 2001.
    [53] W. Zheng, Y. H. Lee, and C. B. Park, "The effects of exfoliated nano-clay on the extrusion microcellular foaming of amorphous and crystalline nylon," Journal of cellular plastics, vol. 42, pp. 271-288, 2006.
    [54] S. Doroudiani, C. B. Park, and M. T. Kortschot, "Processing and characterization of microcellular foamed high‐density polythylene/isotactic polypropylene blends," Polymer Engineering & Science, vol. 38, pp. 1205-1215, 1998.
    [55] M. Yamaguchi and K. I. Suzuki, "Enhanced strain hardening in elongational viscosity for HDPE/crosslinked HDPE blend. II. Processability of thermoforming," Journal of applied polymer science, vol. 86, pp. 79-83, 2002.
    [56] M. Yamaguchi and K. I. Suzuki, "Rheological properties and foam processability for blends of linear and crosslinked polyethylenes," Journal of Polymer Science Part B: Polymer Physics, vol. 39, pp. 2159-2167, 2001.
    [57] J. Wang, W. Zhu, H. Zhang, and C. B. Park, "Continuous processing of low-density, microcellular poly (lactic acid) foams with controlled cell morphology and crystallinity," Chemical Engineering Science, vol. 75, pp. 390-399, 2012.
    [58] W. Zhai, T. Kuboki, L. Wang, C. B. Park, E. K. Lee, and H. E. Naguib, "Cell structure evolution and the crystallization behavior of polypropylene/clay nanocomposites foams blown in continuous extrusion," Industrial & Engineering Chemistry Research, vol. 49, pp. 9834-9845, 2010.
    [59] B. Y. Shin and R. Narayan, "Rheological and thermal properties of the PLA modified by electron beam irradiation in the presence of functional monomer," Journal of Polymers and the Environment, vol. 18, pp. 558-566, 2010.
    [60] W. Zhai, H. Wang, J. Yu, J. Dong, and J. He, "Cell coalescence suppressed by crosslinking structure in polypropylene microcellular foaming," Polymer Engineering & Science, vol. 48, pp. 1312-1321, 2008.
    [61] L. Utracki and R. Simha, "Free volume and viscosity of polymer‐compressed gas mixtures during extrusion foaming," Journal of Polymer Science Part B: Polymer Physics, vol. 39, pp. 342-362, 2001.
    [62] J. H. Han and C. Dae Han, "Bubble nucleation in polymeric liquids. II. Theoretical considerations," Journal of Polymer Science Part B: Polymer Physics, vol. 28, pp. 743-761, 1990.
    [63] N. Ramesh, D. H. Rasmussen, and G. A. Campbell, "The heterogeneous nucleation of microcellular foams assisted by the survival of microvoids in polymers containing low glass transition particles. Part I: Mathematical modeling and numerical simulation," Polymer Engineering & Science, vol. 34, pp. 1685-1697, 1994.
    [64] J. Colton and N. Suh, "The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations," Polymer Engineering & Science, vol. 27, pp. 485-492, 1987.
    [65] J. G. Lee and R. W. Flumerfelt, "A refined approach to bubble nucleation and polymer foaming process: dissolved gas and cluster size effects," Journal of colloid and Interface Science, vol. 184, pp. 335-348, 1996.
    [66] M. Shafi, K. Joshi, and R. Flumerfelt, "Bubble size distributions in freely expanded polymer foams," Chemical Engineering Science, vol. 52, pp. 635-644, 1997.
    [67] K. Joshi, J. G. Lee, M. A. Shafi, and R. W. Flumerfelt, "Prediction of cellular structure in free expansion of viscoelastic media," Journal of applied polymer science, vol. 67, pp. 1353-1368, 1998.
    [68] N. Ramesh and N. Malwitz, "A non-isothermal model to study the influence of blowing agent concentration on polymer viscosity and gas diffusivity in thermoplastic foam extrusion," Journal of cellular plastics, vol. 35, pp. 199-209, 1999.
    [69] S. T. Lee and N. S. Ramesh, "Gas loss during foam sheet formation," Advances in Polymer Technology, vol. 15, pp. 297-305, 1996.
    [70] K. Taki, T. Nakayama, T. Yatsuzuka, and M. Ohshima, "Visual observations of batch and continuous foaming processes," Journal of Cellular Plastics, vol. 39, pp. 155-169, 2003.
    [71] Q. Guo, J. Wang, C. B. Park, and M. Ohshima, "A microcellular foaming simulation system with a high pressure-drop rate," Industrial & engineering chemistry research, vol. 45, pp. 6153-6161, 2006.
    [72] S. N. Leung, C. B. Park, D. Xu, H. Li, and R. G. Fenton, "Computer simulation of bubble-growth phenomena in foaming," Industrial & engineering chemistry research, vol. 45, pp. 7823-7831, 2006.
    [73] J. E. Mark, B. Erman, and M. Roland, The science and technology of rubber: Academic press, 2013.
    [74] S. M. Heilmann, F. J. Palensky, and J. K. Rasmussen, "Radiation-curable polymers," ed: Google Patents, 1983.
    [75] F. M. Precopio and A. R. Gilbert, "Curable polyethylene composition comprising a peroxide containing tertiary carbon atoms, and a filler, and process of curing same," ed: Google Patents, 1959.
    [76] H. G. Scott, "Cross-linking of a polyolefin with a silane," ed: Google Patents, 1972.
    [77] A. Standard, "D2765-01 (reapproved 2006) standard test methods for determination of gel content and swell ratio of crosslinked ethylene plastics," ASTM International, West Conshohocken, PA2006, 2006.
    [78] C. J. Benning, "Polyethylene Foam III—" Orientation in Thermoplastic Foams"," Journal of Cellular Plastics, vol. 3, pp. 174-184, 1967.
    [79] J. Liu, T. Kang, and P. Ye, "Application Note: Differential Scanning Calorimetry," PerkinElmer, Inc., Shelton, CT, 2010.
    [80] W. Sichina, "Characterization of epoxy resins using DSC," PerkinElmer Instruments, vol. 761, 2000.
    [81] J.-P. Pascault, H. Sautereau, J. Verdu, and R. J. Williams, Thermosetting polymers vol. 64: CRC Press, 2002.
    [82] H. J. Tai, "Molecular structure evolution in peroxide‐initiated crosslinking of an ethylene vinyl acetate copolymer and a metallocene polyolefin elastomer," Polymer Engineering & Science, vol. 39, pp. 1577-1583, 1999.
    [83] H.-J. Tai, "Bubble size distribution and elastic retraction in crosslinked metallocene polyolefin elastomer foams," Journal of Polymer Research, vol. 12, pp. 457-464, 2005.
    [84] R.-S. Shih, S.-W. Kuo, and F.-C. Chang, "Thermal and mechanical properties of microcellular thermoplastic SBS/PS/SBR blend: effect of crosslinking," Polymer, vol. 52, pp. 752-759, 2011.
    [85] C. J. Benning, "Modified PE Foam Systems—Part I," Journal of Cellular Plastics, vol. 3, pp. 62-72, 1967.
    [86] H. R. Lasman, "Foaming agents for polyolefins," SPE Journal, vol. 18, pp. 1184-1191, 1962.
    [87] J. G. Burt, "The elements of expansion of thermoplastics Part II," Journal of Cellular Plastics, vol. 14, pp. 341-345, 1978.
    [88] H. Fritz, U. Bölz, and R. Lü, "Generation of Partially Crosslinked Expanded PP-films and-sheets," International Polymer Processing, vol. 13, pp. 129-135, 1998.
    [89] D. Kim and K. Kim, "Investigation of the radiation crosslinked foams produced from metallocene polyolefin elastomers/polyethylene blend," Journal of cellular plastics, vol. 37, pp. 333-352, 2001.
    [90] A. Marcilla, J. García‐Quesada, M. Beltran, and R. Ruiz‐Femenia, "Study of the formulations and process conditions in the crosslinking of polyethylene foams at atmospheric pressure," Journal of applied polymer science, vol. 107, pp. 2028-2037, 2008.
    [91] M. Riahinezhad, I. Ghasemi, M. Karrabi, and H. Azizi, "Morphology and tensile properties of crosslinked nanocomposite foams of low‐density polyethylene and poly (ethylene‐co‐vinyl acetate) blends," Journal of Vinyl and Additive Technology, vol. 16, pp. 229-237, 2010.
    [92] K. W. Park, G. H. Kim, and S. R. Chowdhury, "Improvement of compression set property of ethylene vinyl acetate copolymer/ethylene‐1‐butene copolymer/organoclay nanocomposite foams," Polymer Engineering & Science, vol. 48, pp. 1183-1190, 2008.
    [93] R. Babu, N. Singha, and K. Naskar, "Interrelationships of morphology, thermal and mechanical properties in uncrosslinked and dynamically crosslinked PP/EOC and PP/EPDM blends," Express Polymer Letters, vol. 4, pp. 197-209, 2010.
    [94] M. Legrand and V. Bellenger, "Estimation of the cross-linking ratio and glass transition temperature during curing of amine-cross-linked epoxies," Composites science and technology, vol. 61, pp. 1485-1489, 2001.
    [95] S. Abe and M. Yamaguchi, "Study on the foaming of crosslinked polyethylene," Journal of applied polymer science, vol. 79, pp. 2146-2155, 2001.

    QR CODE