簡易檢索 / 詳目顯示

研究生: 廖克綸
Ke-Lun Liao
論文名稱: 利用離子交換法製備與鑑定高固含量奈米級二氧化矽溶膠水溶液
Preparation and Characterization of Nano-Dispersed Silica Sol Solution with High Solids Content by Ion-Exchange Method
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 林析右
Shi-Yow Lin
許榮木
Jung - Mu Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 170
中文關鍵詞: 奈米級二氧化矽溶膠水溶液
外文關鍵詞: nano silica sol solution
相關次數: 點閱:305下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本研究探討如何合成均一相之奈米級二氧化矽溶膠水溶液。利用矽酸鈉為起始單體並以超純水作為溶劑,藉由強酸型陽離子交換樹脂IR120進行離子交換反應,即可得到穩定之奈米級二氧化矽溶膠水溶液。本研究另探討矽酸鈉起始量、pH值、矽鈉比例與抑制劑添加量等變因的不同,對於二氧化矽溶膠之粒徑大小、分佈性、固含量及長置穩定性的影響,並於濃縮製程中之固含量提升程度。
  另外,本研究藉由樹脂再生之方法來將使用過的陽離子交換樹脂予以再生,並將其應用在製備奈米級二氧化矽溶膠水溶液上,且探討其基本性質與原先的樣品間之差異,以及其分析鑑定的結果是否符合理論之預期。
  於本研究中發現,若奈米級二氧化矽溶膠水溶液的pH值在8∼10.5範圍間,以及矽鈉比例在30∼70之間,其溶液的穩定性極佳且粒徑可維持長久時間不至於變化。而當pH值愈低並接近8時,其粒子的表面電荷愈高,矽鈉比例則會愈接近70,形成溶液較佳的穩定性與粒子的分散性,且於濃縮製程中提供其二氧化矽固含量更高的提升量,並可達到35 % 之最高固含量及粒徑控制在50 nm以內。


The objective of this study is to preparing and characterizing the homogeneous aqueous of silica sol with nanoparticles. It used sodium silicate solution (water glass) as the starting monomer with the solvent of ultrapure water to proceed ion-exchange reaction by strongly acidic cation exchange resin (Amberlite® IR120), then obtained the stably nano-dispersed silica sol solution. This study also investigated such as the amount of the initiator, the pH of the aqueous silica sol, the ratio of SiO2 to Na2O and the presence of inhibitor (TMA hydroxide) with different variables to influence such as the particle size and distribution of aqueous silica sol, silica solid content and the stability of the long period. Therefore, we can derive the tendency and extent of the condensed process from these factors.
In addition, the manner of resin regenerate procedure was involved in this thesis to deal with the used cation exchange resin to be renewed availability then applied that to manufacture the aqueous silica sol in nanoscale. Furthermore, the difference about the basic property of the silica sol regenerate solution such as the particle size and distribution, pH value and silica solid content, etc., that between the precursory samples was discussed and authenticated the results of the identification whether that conform to the expectative theory.
The final result showed the pH value and the ratio of SiO2 to Na2O of silica sol that in the most stable range was 8 to 10.5 and 30 to 70, as well as pH approach to 8 that acquire the maximum value of the ratio of SiO2 to Na2O and the zeta potential on the particles to constitute the stability and dispersion. The silica sol solution could be further via concentrated method to obtain the higher elevations of silica solid content that achieved to 35 % as the maximum and the particle size with less than 50 nm.

中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 圖目錄 viii 表目錄 xiii 第一章 緒論  1.1 研究背景 1  1.2 研究目的 3 第二章 基礎理論與文獻回顧  2.1 奈米材料及其特性 5  2.2 奈米級二氧化矽 8   2.2.1 奈米級二氧化矽溶膠水溶液的製備方法 11   2.2.2 溶膠-凝膠法與Stöber Process之介紹 13   2.2.3 溶膠-凝膠法反應機制 20    2.2.3.1 水解反應 21    2.2.3.2 聚縮合反應 21    2.2.3.3 離子交換反應 22   2.2.4 溶膠-凝膠法反應之影響變因 23    2.2.4.1 pH值的影響 23    2.2.4.2 溶劑種類的影響 28    2.2.4.3 反應溫度的影響 29    2.2.4.4 水含量與起始劑比例的影響 30    2.2.4.5 誘導與立體效應的影響 31   2.2.5 二氧化矽的成核及成長機制 33    2.2.5.1 均質成核與表面成長理論 35    2.2.5.2 二氧化矽溶膠水溶液的均質成核 36   2.2.6 膠體粒子之穩定機制 37    2.2.6.1 電雙層穩定機制(DLVO理論) 38    2.2.6.2 立體效應穩定機制 41  2.3 奈米級二氧化矽溶膠水溶液的濃縮 45  2.4 表面改質與抑制劑 48   2.4.1 矽烷偶合劑的反應機制 48   2.4.2 抑制劑之穩定機制 50  2.5 離子交換樹脂與其之再生反應 54   2.5.1 離子交換樹脂之特性 56   2.5.2 離子交換樹脂之再生 58 第三章 實驗藥品、儀器及方法  3.1 實驗藥品 61  3.2 實驗儀器與設備 63  3.3 實驗方法 65   3.3.1 奈米級二氧化矽溶膠水溶液之製備 65   3.3.2 陽離子交換樹脂再生及其應用在製備奈米級二氧化矽溶膠水溶液 80  3.4 奈米級二氧化矽溶膠水溶液之性質測定與分析 84   3.4.1 動態光散射粒徑分析儀(DLS)測量粒徑(ZAve, nm)及粒徑分佈(Poly. Index) 84   3.4.2 感應耦合電漿原子發射光譜儀(ICP)測定二氧化矽溶膠水溶液內矽與鈉含量之比例(SiO2:Na2O) 85   3.4.3 傅立葉轉換紅外線光譜分析儀(FTIR)分析奈米級二氧化矽之結構 86   3.4.4 Zeta電位儀分析奈米級二氧化矽溶膠水溶液之表面電位(Zeta potential,ξ) 87 第四章 結果與討論  4.1 均相奈米級二氧化矽溶膠水溶液之製備 88  4.2 起始劑含量與離心處理對奈米級二氧化矽溶膠水溶液之影響 91  4.3 pH值對奈米級二氧化矽溶膠水溶液之影響 99  4.4 抑制劑對奈米級二氧化矽透明溶膠之影響 108  4.5 濃縮製程對奈米級二氧化矽溶膠水溶液之影響 115  4.6 離子交換樹脂之再生對製備奈米級二氧化矽溶膠水溶液之影響 127   4.6.1 再生之離子交換樹脂應用於實驗Part A中的影響 127   4.6.2 再生之離子交換樹脂應用於實驗Part B中的影響 131   4.6.3 再生之離子交換樹脂應用於實驗Part D中的影響 134  4.7 奈米級二氧化矽溶膠水溶液之儀器測定與分析鑑定 138   4.7.1 奈米級二氧化矽溶膠水溶液之FTIR分析 138   4.7.2 奈米級二氧化矽溶膠水溶液之ZETA分析 144   4.7.3 奈米級二氧化矽溶膠水溶液之ICP分析 146 第五章 結論與建議事項 149 參考文獻 153

1.A. Yoshida, Advance in chemistry series. 234, 51 (1994)
2.E. P. Moore, U. S. patent. 3956171 (1976)
3.M. R. Joseph, and O. Cleneland, U. S. patent. 2577485 (1951)
4.H. W. Swofford, U. S. patent. 4822828 (1989).
5.M. Guest, M. W. Preus, and W. Lewis, U. S. patent. 5013608 (1991)
6.M. Guest, M. W. Preus, and W. Lewis, U. S. patent. 5102695 (1992)
7.Y. Chevallier, Decines, and France U. S. patent. 5066420 (1991)
8.F. Lin, Thin solid films. 347, 248 (1999)
9.黃啟華,碩士論文,國立台灣科技大學化學工程研究所,2007。
10.W. Stöber, A. Fink, and E. Bohn, Journal of Colloid and Interface 26, 62 (1968)
11.E. Pere, H. Cardy, V. Latour, and S. Lacombe, Journal of Colloid and Interface Science. 281, 410 (2005)
12.T. G. Waddel, D. E. Leyden, and M. T. Debello, Journal of American Chemical Society. 103, 5303 (1981)
13.Malsch, Nanotechnology. 10, 1 (1999)
14.M. Boutonnet, J. Kizling, V. M. Eya, A. Choplin, R. Touroude, G. Maire, and P.Stenius, Journal of Cataluysis, 103, 95 (1987)
15.莊萬發,超微粒子理論應用,臺南:復漢 (1998)。
16.蘇品書,超微粒子材料技術,臺南:復漢 (1998)。
17.蔡宏欣,碩士論文,國立台灣大學材料科學與工程研究所,2002。
18.史宗淮,化工,第42 卷第6 期,28,1995。
19.汪建民,陶瓷技術手冊(上),27,1993。
20.J. Adams, T. Baird, P. S. Braterman, J. A. Cairns, and D. L. Segal, Better Ceramics through Chemistry III. 361, Pittsburgh (1988)
21.J. Brinker, and G. W. Scherer, Academic press. Boston (1990)
22.J. T. Landry, B. K. Coltrain, J.A. Wesson, N. Zumbulyadis, and J. L. Lippert, Polymer. 33, 1496 (1992)
23.J. T. Landry, B. K. Coltrain, and B. K. Brady, Polymer. 33, 1486 (1992)
24.G. Cerveau, R. J. P. Corriu, and E. Framery, Journal of materials chemistry. 10, 1617 (2000)
25.S. Coenen, and C. G. DE Kruif, Journal of Colloid and Interface Science. 124, 104 (1988)
26.E. Sada, H. Kumazawa, and E. Koresawa, Journal of The Chemical Engineering. 44, 133 (1990)
27.Z. j. Li, C. r. Liu, and Q. s. Zhao, Journal of Non-Crystalline Solids. 265, 189 (2000)
28.P. G. Bird, U. S. patent. 2244325 (1940)
29.D. Lasic, Colloids and Surfaces. 20, 265 (1986)
30.詹混凱,碩士論文,國立成功大學化學工程研究所,1998。
31.工業技術研究院,化工資訊與商情,11月號第41期, 2006。
32.R. A. Asink, and B. D. Kay, Journal of Non-Crystalline Solids. 99, 359 (1988)
33.R. K. Iler, The Chemistry of Silica. Wiley, New York (1979)
34.Y. K. Lee, Y. R. Yoon, and H. K. Rhee, Colloid and Surfaces A. 173, 109 (2000)
35.R. Winter, J. B. Chan, R. Frattini, and J. Jonas, Journal of Non-Crystalline Solids. 105, 214 (1988)
36.M. J. Burke, and A. Nobel Inc., U. S. patent. 0113462 (2005)
37.M. S. Tsai, Materials Science and Engineering. 106, 52 (2004)
38.L. Daniela, R. Wangner, V. Vanderley, and L. Wander, Materials Science and Engineering. 334, 53 (2002)
39.L. Kepinski, D. Hreniak, and W. Strek, Journal of Alloys and Compounds. 341, 203 (2002)
40.C. J. Brinker, Journal of Non-Crystalline Solids. 100, 30 (1988)
41.周更生,陳貞志,化工年會,2003。
42.R. Terry, Academic Press. Boston (1996)
43.D. Myers, Surface, Interface, and Colloids. Wiley-VCH, New York (1991)
44.戴怡德,陳寶祺,化工,第 46卷第2 期,43,1999。
45.H. K. Schmidt, Journal of Sol-Gel Science and Technology. 8, 557 (1997)
46.K. C. Vrancken, P. V. Voort, K. Possemiers, and E. F. Vansant, Journal of Colloids and Surfaces. 98, 235 (1995)
47.B. Arkles, CHEMTECH. 7, 766 (1977)
48.D. Y. Kim, H. Du, and D. W. Johnson Jr., Journal of the American Ceramic Society. 87, 1789 (2004)
49.R. K. Harris, and C. T. G. Knight, Journal of Molecular structure. 78, 273 (1982)
50.S. D. Kinrade, J. C. H. Donovan, A. S. Schach, and C. T. G. Knight, Journal of the Chemical Society. 7, 1250, Canada (2002)
51.P.W.J.G. WIJNEN, T.P.M. BEELEN, J.W. DEHAAN, L.J.M. VAN DE VEN, and R.A. VAN SANTEN, Colloids and Surfaces. 45, 255 (1990)
52.S. D. Kinrade, C. T. G. Knight, D. L. Pole, and R. T. Syvitski, Inorganic Chemistry. 37, 4272 (1998)
53.J. C. J. Van Der Donck, and H. N. Stein, Langmuir. 9, 2276 (1993)
54.三菱化學株式會社,DIAION離子交換樹脂&合成吸附劑技術手冊Ι,9,2001。
55.楊岳軍,重金屬廢水處理技術研討會,工研院化工所,1989。
56.W. C. Bauman, and J. Eichhorn, Journal of American Chemical Society. 69, 2830 (1947)
57.D. D. Lasic, Colloids and Surfaces. 20, 265 (1986)
58.R. K. Sharma, Journal of Colloid and Interface Science. 277, 342 (2004)
59.J. OSSWALD, and K. T. FEHR, Journal of Material Science. 41, 1335 (2006)
60.Vinogradova, M. Estrada, and A. Moreno, Journal of Colloid and Interface Science. 298, 209 (2006)
61.P. J. Launer, Infrared analysis of organosilicon compounds: spectra-structure correlations. Burnt Hills, New York (1987)

無法下載圖示 全文公開日期 2016/07/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE