簡易檢索 / 詳目顯示

研究生: 黃昱勝
Yu-Sheng Huang
論文名稱: 基於Raspberry Pi之動態航點導航及量測資料即時傳輸
Dynamic Waypoint Navigation and Instant Transmission of Measured Data using Raspberry Pi
指導教授: 鄭瑞光
Ray-Guang Cheng
口試委員: 曹孝櫟
Shiao-Li Tsao
許獻聰
Shiann-Tsong Sheu
鄭欣明
Shin-Ming Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 52
中文關鍵詞: RaspberryPi航點導航即時傳輸四軸飛行器
外文關鍵詞: Raspberry Pi, Waypoint Navigation, Instant Transmission, Quadcopter
相關次數: 點閱:163下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近幾年來由於天然災害發生頻繁,災害發生後救難人員往往無法把握黃金72小時的救援時刻而造成人員傷亡的慘重。主要原因為災區環境中房屋倒塌、路面遭受破壞導致傳統的搜索方式效率不佳。隨著四軸飛行器的興起,應用四軸飛行器於災區搜尋受困者的議題也越來越熱門。然而,目前市面的四軸飛行器沒有動態航點導航及量測資料即時傳輸的功能。四軸飛行器只能根據事先規劃的航點飛行,無法根據量測資料動態地決定下一個航點,因此無法縮短四軸飛行器的搜索時間。另外,當四軸飛行器有量測資料時,必須等到返回到使用者的身邊才能將量測資料取出,因而延遲取得量測資料的時間。本論文主要使用Raspberry Pi解決實作動態航點導航及量測資料即時傳輸的挑戰,使Raspberry Pi能夠在四軸飛行器到達航點時,根據量測資料動態地決定下一個航點,並使四軸飛行器飛往下一個航點。另外,四軸飛行器在飛行途中也能夠一邊飛行一邊即時傳輸量測資料。


In recent years, disasters occurred frequently. After a disaster, rescue personnel are often unable to save the trapped people during gold 72 hours and may make heavy casualties. The main reason of low efficiency is that using traditional method to search because of collapse of houses and destroyed pavement at stricken regions. Since quadcopter become popular, the issue of using quadcopter to search trapped people in stricken regions has been major topic of debate. However, there is no quadcopter has function of dynamic waypoint navigation and instant transmission of measured data on the market. Quadcopter is able to fly according to the waypoint in advance planning, but could not dynamically decide the next waypoint according to the measured data. Quadcopter is unable to shorten the search time. In addition, if the quadcopter has measured data, user only can wait until the quadcopter is back and retrieve the measured data. It led to delay to get the measured data. In this thesis, solving challenge for implementation of dynamic waypoint navigation and instant transmission of measured data using Raspberry Pi which is able to determine a next waypoint according measured data when quadcopter arrive at the waypoint. Besides, quadcopter also can instantly transmit the measured data while flying.

論文摘要 Abstract 誌 謝 目錄 圖目錄 表目錄 第一章 緒論 1.1研究動機與目的 1.2動態航點導航文獻探討 1.3控制軟體探討 1.3.1 APM Planner 2.0 1.3.2MAVProxy 1.4論文介紹 第二章 系統架構 2.1基於四軸飛行器之搜索架構 2.2基於四軸飛行器之搜索流程 第三章系統實作 3.1Raspberry Pi模組的需求 3.2動態航點導航 3.2.1航點接收 3.3量測資料即時傳輸 3.3.1量測資料即時傳輸 第四章系統實作與結果 4.1Raspberry pi硬體介紹 4.1.1 Raspberry Pi作業系統安裝與設定 4.1.2 MAVProxy安裝與設定 4.1.3MAVProxy應用程式 4.1.4自動運行 4.2航點自動上傳 4.3動態航點導航 4.3.1航點接收與儲存 4.3.2動態航點導航實作結果 4.4量測資料即時傳輸 4.4.1 3DR Radio無線傳輸模組設定 4.4.2量測資料即時傳輸實作結果 第五章 結論 參考文獻

[1]地震災害及防治[Online]. Available: http://resource.blsh.tp.edu.tw/science-i/home/page.asp?peri=356&order=7
[2]921地震資訊 [Online]. Available: http://921.gov.tw/edu/edu-commonsense.html
[3]20100112 海地地震初步分析評估摘要 [Online]. Available: http://www.ncdr.nat.gov.tw/upload/epaper/056.pdf
[4]Y. Shibata, N. Uchida, and N. Shiratori, “Problem analysis and improvement of disaster information network and system from experiences of the great East Japan Earthquake,” IEEE Region 10 Humanitarian Technology Conference (R10-HTC), 2013.
[5]Y. Naidoo, R.Stopforth, and G. Bright, "Developmnt of an UAV for Searceh & Rescue Applications," IEEE The Falls Resort and Conference Centre, 2011.
[6]L. Lin, M. Roscheck, M. Goodrich, and B. Morse, “Supporting wilderness search and rescue with integrated intelligence: autonomy and information at the right time and the right place,” 24th AAAI Conf. Artificial Intelligence, 2010
[7]I. H. Whang, “Horizontal waypoint guidance design using optimal control,” IEEE Transactions on Aerospace and Electronic Systems, 2002
[8]N. M. Wardhana, H. Johan, and H. S. Seah, “Enhancedwaypoint graph for surface and volumetric path planning in virtual worlds,” The Visual Computer, 2013.
[9]J. Overholt, G. Hudas, G. Fiorani, M. Skalny and A. Tucker, “Dynamic waypoint navigation using Voronoi classifier methods,” U.S. Army RDECOM-TARDEC Robotics Mobility Laboratory, 2004
[10]D. Jia, C. Hu, K. Qin and X. Cui, “Planar waypoint generation and path finding in dynamic environment,” International Conference on Identification, Information and Knowledge in the Internet of Things, 2014
[11]W. Zhu, D. Jia, H. Wan, T. Yang, C. Hu, K. Qin, and X. Cui, “Waypoint Graph Based Fast Pathfinding in Dynamic Environment,” International Journal of Distributed Sensor Networks, 2014
[12]J. Osborne and R. Rysdyk, “Waypoint guidance for Small UAVs in wind,” Infotech@Aerospace Conferences, 2005.
[13]V. Vujovic and M. Maksimovic, “Raspberry Pi as a Wireless Sensor Node:Performances and Con-straints,“ 37th International Convention on In-formation and Communication Technology, Elec-tronics and Microelectronics (MIPRO), 2014.
[14]MAVLink. [Online]. Available: http://qgroundcontrol.org/mavlink/start
[15]APM Planner 2.0. [Online]. Available: http://planner2.ardupilot.com/
[16]MAVProxy. [Online]. Available: http://tridge.github.io/MAVProxy/
[17]內政部災害應變中心與現地指揮官之指揮、協調權限探討之研究期末報告[Online]. Available: http://www.nfa.gov.tw/Uploads/Links/%E7%B6%9C%E5%90%88%E4%BC%81%E5%8A%83%E7%B5%84/101%E5%87%BA%E7%89%88%E5%93%81/%E7%81%BD%E5%AE%B3%E6%87%89%E8%AE%8A%E4%B8%AD%E5%BF%83%E8%88%87%E7%8F%BE%E5%9C%B0%E6%8C%87%E6%8F%AE%E5%AE%98%E4%B9%8B%E6%8C%87%E6%8F%AE%E3%80%81%E5%8D%94%E8%AA%BF%E6%AC%8A%E9%99%90%E6%8E%A2%E8%A8%8E%E4%B9%8B%E7%A0%94%E7%A9%B6%E6%9C%9F%E6%9C%AB%E5%A0%B1%E5%91%8A.pdf
[18]Raspbian. [Online]. Available: http://elinux.org/Raspbian
[19]APM. [Online]. Available: https://store.3drobotics.com/products/apm-2-dot-6-plus-assembled-set-side-entry
[20]3DR Radio. [Online]. Available: https://store.3drobotics.com/products/3dr-radio-915_mhz?taxon_id=34
[21]Waypoint Protocol. [Online]. Available: http://qgroundcontrol.org/mavlink/waypoint_protocol

QR CODE