簡易檢索 / 詳目顯示

研究生: 陳欣禹
CHEN - XIN YU
論文名稱: 蛋白酶降解對bacteriorhodopsin光電響應之影響
Effects of papain digestion on the photocurrent responses of bacteriorhodopsin
指導教授: 陳秀美
Hsiu-Mei Chen
口試委員: 王孟菊
Meng-Jiy Wang
林保宏
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 165
中文關鍵詞: 蛋白酶
外文關鍵詞: papain bacteriorhodopsin
相關次數: 點閱:329下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以papain對Halobacterium salinarum嗜鹽菌中紫色細胞膜(purple membrane,PM)的細菌視紫質蛋白(bacteriorhodopsin,BR)進行降解,並探討此處理對其所製備生物晶片之光電流響應的影響。隨著降解時間的增加,會使BR所在的細胞膜由紫色變成藍色,而此特性和BR處於低pH值時相同。將以此所製備之光電晶片,在pH 8.5的環境下測量其光電響應,發現papain降解的時間延長至14 h後,其光電流極性會產生反向,此也和BR處於低pH值時之質子泵特性相似。但是以papain降解D96N PM突變種時,可以發現隨著降解時間的增加,晶片光電流的極性並未產生反轉,表示降解雖然會增加BR質子攝取的速率,但還是不足以彌補因Asp96→Asn突變所造成之影響。另外,將降解後的native PM,置於不同pH值的電解液中測量其光電響應,可發現隨著降解時間的增加,其光電流極性反轉時的pH值也隨著增加;而降解D96N PM所製備的晶片,其光電流極性反轉時的pH值卻一直維持在4.0。此說明了降解確實會影響BR的質子泵特性。此外,添加NaN3於電解液中,可發現NaN3也會影響BR的質子泵特性,進而改變其光電流極性。正極同樣塗覆有不同降解時間後之PM的ITO,而負極則由空白ITO分別改為未經降解和經降解18 h後之native PM的ITO,量測其光電流響應時,可得到具加成性的光電流響應。

最後,利用5-(iodoacetamido) fluorescein (IAF)與G241C PM上之cysteine殘基結合後,PM的495 nm吸收光譜會隨著懸浮液之pH值與鹽濃度而改變,進一步可計算出G241C PM的表面電荷為-0.500 e-/BR。而以papain降解過後之G241C PM則無法顯現495 nm吸收值,再次證明降解會移除cysteine所在之胜肽段,而影響PM的表面電荷。


In this study, limited papain-proteolysis of bacteriorhodopsin (BR) residing in the purple membrane (PM) of halophilic Halobacterium salinarum was employed to investigate the digestion effects on the photocurrents of drop-casted PM chips. The PM colors changed from purple to blue with the increase of digestion time, the same phenomenon also observed while the pH of PM suspension solutions was decreased from alkaline to acidic. The photocurrent polarity of native PM-coated chips in a pH 8.5 electrolyte changed upon 14-h prolonged digestion, which was also observed with an undigested native PM chip in acidic electrolytes. On the other hand, the photocurrent polarity of D96N PM-coated chips in a pH 8.5 electrolyte remained the same throughout the whole digestion process, implying the retardation of BR proton-uptake caused by Asp96→Asn mutation could not be completely overcome by the enhancement of the proton-uptake rate with papain digestion. Furthermore, the electrolyte pH where the photocurrent polarity of native PM-coated chips reversed increased with the increase of digestion time, while the value remained at pH 4.0 for the D96N ones, suggesting the effect of papain-digestion on the proton pump of BR. Moreover, the addition of NaN3 in the electrolyte also affected the proton pump and reversed the photocurrent polarity of the digested PM chips back to the original undigested state. The replacement of the counter electrode from blank ITO to ITO coated with undigested and 18-h digested PM decreased and increased the photocurrents, respectively, indicating the photocurrents of PM were addable. Finally, the labeling with 5-(iodoacetamido) fluorescein yielded an increase of absorbance at 495 nm for G241C PM, but not for the digested PM, confirming the removal of the Cys241-containing C-terminal peptide by papain digestion. Tuning the 495-nm absorbance values by changing the pH and salt concentrations of suspension solutions for the labeled G241C PM led to an estimate of its surface charge as -0.5 e- / BR.

中文摘要 ……………………………………………………………………… 目錄 …………………………………………………………………………… 表目錄與圖目錄 ……………………………………………………………… 第一章 緒論 …………………………………………………………………… 第二章 文獻回顧 ..…………………………………………………………….. 2-1 Halobacterium salinarum與BR ……………………………......... 2-1-1 H. salinarium ……………..……………………………… 2-1-2 細菌視紫質蛋白( BR) ………..…………………………. 2-1-3 BR的光循環 ……………………..…………….……….. 2-2 D85N和D96N PM突變種BR的基本性質………………….......... 2-3 二價離子對PM的影響 ..…………………………………….….. 2-4 以蛋白酶papain降解PM ………………………………………… 2-5 PM的固定化方法 …………..…………………………………... 2-5-1 Langmuir-Blodgett (LB)法 ……………........................... 2-5-2 電泳沉積法(electrophoretic sedimentation,EPS) .......... 2-6 BR的應用 ..…………………………………………………..….. 第三章 實驗…………………………………………………………………….. 3-1 實驗目的…………………………………………………………... 3-2 實驗流程…………………………………………………………... 3-3 實驗藥品與材料…………………………………………………... 3-4 實驗儀器…………………………………………………………... 3-5 藥品配製…………………………………………………………... 3-6 實驗步驟…………………………………………………………... 3-6-1 嗜鹽菌之培養與PM 之純化 …………………………... 3-6-1-1 嗜鹽菌之培養…………………………………….. 3-6-1-2 PM之純化…………………………..……….…… 3-6-1-3 BR濃度的定量…………………………………... 3-6-2 12.5 % SDS-PAGE蛋白質電泳膠片製備…………….. 3-6-3 以papain降解native PM………………………………… 3-6-4 晶片製作…………………………………………….…… 3-6-5 電場沉積法(EPS)之晶片製作…………………………… 3-6-6 光電訊號量測……………………………………….…… 3-6-7 玻璃清洗步驟……………………………………….…… 3-6-8 FTIR樣品製備與測量……………………………….…... 3-6-9 表面電荷的樣品製備……………………………….…… 3-6-9-1 G241C PM的樣品製備…………………………… 3-6-9-2 native PM的樣品製備……………..……….…… 3-6-9-3 Papain降解G241C PM表面電荷的樣品製備.…. 第四章 結果與討論…………………………………………………………….. 4-1 PM濃度的影響…………………………………………………… 4-2 Papain降解對PM之影響………………………………………… 4-3 Papain降解時間對PM晶片光電流極性之影響……….. 4-4 電解液pH值對PM晶片光電流響應之影響……………. 4-5 電解液中添加NaN3對晶片光電流響應之影響…………. 4-6 Native PM光電流響應之加成性…………………………... 4-7 G241C PM的表面電荷分析…………………………………. 4-8 電場沉積法對native PM所製備的光電流晶片之影響……… 第五章 結論 …………………………………………………………………… 第六章 參考資料 ………………………………………………………………

洪國峰,”一種製備Bacteriorhodopsin 生物光電晶片的簡易方法”,國立台灣科技大學化學工程研究所碩士論文(2008)

余安棣,”製備具高度方向性之Bacteriorhodopsin 生物光電晶片”,國立台灣科技大學化學工程研究所碩士論文(2007)

Alexiev, U., Mart, T., Heyn, M. P., Khorana, H. G., Scherrert, P., “Surface charge of bacteriorhodopsin detected with covalently bound pH indicators at selected extracellular and cytoplasmic sites, ” Biochemistry, 33, 298-306 (1994)

Butt, H. J., Fendler, K., Bamberg, E., Tittor, J., Oesterhelt, D., “Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump,” EMBO J., 8, 1657-1663 (1989)

Chang, C. H., Chen, J. G., Govindjee, R., Ebrey, T., “Cation binding by bacteriorhodopsin,” Proc. Natl. Acad. Sci. USA, 82, 396-400 (1985)

Chang, C. H., Jonas, R., Melchiore, S., Govindjee, R., Ebrey, T. G., “Mechanism and role of divalent cation binding of bacteriorhodopsin,” Biophys. J., 49, 731-739 (1986)

Chen, Z., Lewis, A., Takei, H., Nebenzahl, I., “Bacteriorhodopsin oriented in polyvinyl alcohol films as an erasable optical storage medium, ” Appl. Optics, 30, 5188-5196 (1991)

Gibson, N. J., Cassim, J. Y., “Nature of forces stabilizing the transmembrane protein bacteriorhodopsin in purple membrane,” Biophys. J., 56, 769-780 (1989)

Haupts, U., Tittor, J., Oesterhelt, D., “Closing in on bacteriorhodopsin : progress in understanding the molecule, ” Annu. Rev. Biophys. Biochem., 28, 367-399 (1999)

He, J. A., Samuelson, L., Li. L., Kumar, J., Tripathy, S. K., “Photoelectric properties of oriented bacteriorhodopsin/polycation multilayers by electrostatic layer-by-layer assembly,” J. Phys. Chem. B, 102, 7067-7072 (1998)

He, J. A., Samuelson, L., Li, L., Kumar, J.,Tripathy, S. K., “Bacteriorhodopsin thin film assemblies-immobilization, properties, and applications,” Adv. Mater., 11, 435-466, (1999)

Heberle, J., Fitter, J., Sass, H. J., Buldt, G., “Bacteriorhodopsin: the functional details of a molecular machine are being resolved,” Biophs. Chem., 85, 229-248 (2000)

Hwang, S. B., Korenbrot J, I., Stoeckenius W., “Structural and spectroscopic characteristics of bacteriorhodopsin in air-water surface films, ” J. Membr. Biol., 36, 115-135 (1977)

Koutalos, Y., Ebrey, T. G., Gilson, H. R., Honig, B., “Octopus photoreceptor membranes:Surface charge density and pK of the Schiff base of the pigments,” Biophys, J., 58, 493-501 (1900)

Koyama, K., Miyasaka, T., “The proton uptake channel of bacteriorhodopsin as studied by a photoelectrochemical method,” Bioelectrochemistry, 53, 111-118 (2000)

Lanyi, J. K., “Mechanism of ion transport across membranes,” Biol. Chem. J., 272, 31209-31212 (1997)

Li, B. F., Li, J. R., Song, Y. C., Jiang, L., “A study of the improvement of photoelectric responses on a Langmuir-Blodgett film containing bacteriorhodopsin,” Mater. Sci. Eng., C3, 219-222 (1995)

Liao, M. J., Khorana, H. G., “Removal of the carboxyl-terminal peptide does not affect refolding or function of bacteriorhodopsin as a light-deoendent proton pump,” Biol. Chem., 259, 4194-4199 (1984)

Lu, T., Rothe, U., Liebau, M., Schaffer, H., Hufnagel, P., Nakowsky, U., “Investigation of the orientation of purple membrane sheets in Langumuir-Blodgett films by a quartz crystal microbalance,” IUBMB Life, 48, 549-556 (1999)

Min, J., Choi, H. G., Choi, J. W., Lee, W. H., Kim, U. R., “Optimal fabrication condition of bacteriorhodopsin films by electrophoretic sedimentation technique,” Supramol. Sci., 5, 687-690 (1998)

Nicoliniyzx, C., Erokhiny, V., Paddeuy, S., Sartore, M., “Towards a light-addressable transducer bacteriorhodopsin based, ” Nanotechnology, 9, 223–227 (1998)
Robertson, B., Lukashev, E. P., “Rapid pH change due to bacteriorhodopsin measured with a tin-oxide electrode,” Biophys. J., 68, 1507-1517 (1995)

Saitô, H., Yamaguchi, S., Ogawa, K., Tuzi, S., Marquez, M., Sanz, C., Padros, E., “Glutamic acid residues of Bacteriorhodopsin at the extracellular surface as determinants for conformation and dynamics as revealed by site-directed solid-state 13C NMR,” Biophys. J., 86, 1673-1681 (2004)

Stickrath, J. X., Bhattacharya, J. N., Varo, G., Hillebrecht, J. R., Ren, L., Birge, R. R., “Direct measurement of the photoelectric response time of bacteriorhodopsin via electro-optic sampling,” Biophys. J., 85, 1128-1134 (2003)

Tittor, J., Soell, C., Oesterhelt, D., Butt, H-J., Bamberg, E., “A defective proton pump, point-mutated bacteriorhodopsin Asp96 → Asn is fully reactivated by azide, ” EMBO J., 8, 3477-3482 (1989)

Weetall, H. H., Samuelson, L. A., “Optical and electrical properties of bacteriorhodopsin Langmuir-Blodgett films, ” Thin Solid Films, 312, 306-312 (1998)

無法下載圖示 全文公開日期 2016/01/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE