簡易檢索 / 詳目顯示

研究生: 陳志忠
CHIH-CHUNG CHEN
論文名稱: 應用於交直流轉換器之電磁干擾濾波器配置
Improved EMI Filter Placement for AC-DC Applications
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 劉光華
Kwang-Hwa Liu
邱煌仁
Huang-Jen Chiu
榮世良
Brady Jung
林瑞禮
Ray-Lee Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 84
中文關鍵詞: 電磁干擾衰減洩放電阻輸出無負載狀況漏感
外文關鍵詞: bleed resistor, electromagnetic interference (EMI), no load power consumption
相關次數: 點閱:300下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

眾所週知的,交換式電能轉換器為EMI(電磁干擾)之主要雜訊來源,必需在輸入電源端,加裝EMI濾波器衰減雜訊的強度,以避免干擾到其它電子設備。然而,此一濾波器雖然達到了符合EMI法規要求,但卻必需付出電能轉換器之體積,重量及成本增加之代價。同時,依照安規規定,為防止使用者觸電之危險,濾波器中X 電容必需加入洩放電阻,此一電阻的損耗,成為功率輸出於51 W以下的電能轉換器,在空載滿足低於0.3 W規範的關鍵因素之一。
本論文藉由應用於交直流轉換器,以降低無負載的損耗為前提下,尋求一同時滿足安規及EMI法規下之電磁干擾濾波器配置。本論文中提出二種方案: (一) 改變橋式整流器之位置及 (二) 使用低於0.1 µF X電容,因此可以符合安規規定將洩放電阻移除,而提出一改良型濾波器之配置。
研究過程,首先依照EMI濾波器之標準設計步驟流程,針對一90W電源轉換器之濾波器進行每一步驟之設計,依照設計步驟及實際量測結果所示本設計可以成功的符合EMI法規之要求。
由實驗結果證明此改良型濾波器之配置在符合安規規定並可通過電磁干擾測試之情形下,可以有效達到洩放電阻之固定功耗消除。
再者,因有效降低共模電感之體積,得以調整差模電感的感量,提高功率密度的性能。


It is well known that the switch mode power supply is the noise source of the electromagnetic interference (EMI). To avoid the interference with the other electronic systems, a filter on the input power source has to be used to attenuate the noise so that the EMI regulations can be met. However, adding an EMI filter as the solution pays the penalty on the converter’s size, weight and cost.
Moreover, there are two series bleed resistors connected in parallel with the X-capacitor within the EMI filter specified by the safety regulation. This resistor power loss is a critical to meet the 0.3 W at no load operating conditions for low power (less than 51 W) applications.
Without violating the safety regulation, two approaches are considered to design the EMI filter without bleed resistors. An improved filter placement is thus proposed and the experimental results are obtained to demonstrate its feasibility.
Following step by step design procedures proposed in the literature, a conventional EMI filter is designed and tested for 90 W AC adapter applications. According to the base-line measurement, higher than 40 dBµV attenuations are required in this application. Therefore, two-stage filter configuration is selected. The experimental results show that the design is successfully met the EMI regulation.
Moreover, several additional advantages are discussed. The proposed EMI filter placement can reduce the size of the CM choke and provide a flexible leakage inductance adjustment for the DM choke. These advantages make the proposed filter placement suitable for high power-density and low-power applications

Table of Content Abstract................................................II Acknowledgements.......................................III Table of Content.........................................V List of Figures........................................VII List of Tables..........................................XI Chapter 1 Introduction..................................12 1.1 Background and Motivation...........................12 1.2 Objectives of the Thesis............................14 1.3 Organization of the Thesis..........................14 Chapter 2 Conventional EMI filter Configuration.........16 2.1 Introduction........................................16 2.1.1 Block diagram of the EMI issue....................17 2.1.2 EMI noise separator...............................20 2.2 Conventional EMI filter placement...................22 2.2.1 Differential mode filter components...............23 2.2.2 Common mode filter components.....................26 2.3 Conventional EMI filter design......................30 2.4 Verification of EMI filter design...................39 2.5 Practical EMI filter implementation.................41 2.5.1 TVS (Transient Voltage Suppressor)................42 2.5.2 Varistors.........................................43 2.5.3 Thermistor........................................44 2.6 Summary.............................................45 Chapter 3 Improved EMI Filter Placements................47 3.1 Introduction........................................47 3.2 Current solution without bleed resistor.............48 3.3 Proposed EMI filter placement without bleed resistor..50 3.4 Analysis of DM noise level with bridge diode Trr....62 3.5 Design issues of the proposed EMI filter placement..75 3.6 Summary.............................................77 Chapter 4 Conclusions and Future Research...............78 4.1 Conclusions.........................................78 4.2 Future research .....................................79 References..............................................80 Vita....................................................84

References
[1] S. Wang, F. C. Lee, and W. G. Odendaal, “Improving the performance of boost PFC EMI filters,” in Proc. IEEE Applied Power Electronics Conference and Exposition. APEC’03, vol. 1, pp. 368–374.

[2] S. Wang, F. C. Lee, D. Y. Chen, and W. G. Odendaal, “Effects of parasitic parameters on EMI filter performance,” IEEE Trans. Power Electron., vol. 19, issue. 3, pp. 869–877, May 2004.

[3] S. Qu and D. Y. Chen, “Mixed-mode EMI noise and its implications to filter design in off line switching power supplies,” IEEE Trans. Power Electron., vol. 17, issue. 4,
pp. 502–507, Jul. 2002.

[4] M. Jin and M. Weiming, “A new technique for modeling and analysis of mixed-mode conducted EMI noise,” IEEE Trans. Power Electron., vol. 19, issue. 6, pp. 1679–1687, Nov. 2004.

[5] Choi Jin-ho, Madafshar Majid, P. Kevin, “Designing common-mode (CM) EMI noise cancellation without Y-capacitor,” in Proc. IEEE Applied Power Electronics Conference. APEC’07, 2007, pp. 936-940.

[6] Pingping Chen, Honghao Zhong, Zhaoming Qian, Zhengyu Lu. “The passive EMI cancellation of Y capacitor and CM model of transformers used in switching mode power supplies,” in Proc. IEEE Power Electronics Specialists Conference. PESC ’04,
vol. 2, 2004, pp. 1076-1079.

[7] Chung H, Hui. S.Y.R, Tse K. K, “Reduction of power converter EMI emission using soft-switching technique,” IEEE Trans. Electromagnetic Compatibility, vol. 40, issue 3,
pp. 282-288, 1998.

[8] D. H. Liu and J. G. Jiang, “High frequency characteristic analysis of EMI filter in switch mode power supply,” in Proc. IEEE Power Electronics Specialists Conference. PESC ’02, vol. 4, 2002, pp. 2039-2043.

[9] T. C. Neugebauer, J. W. Phinney, and D. J. Perreault, “Filters and components with inductance cancellation,” IEEE Trans. Industry Applications, vol. 40, issue 2,
pp. 483–491, 2004.

[10] S. Wang, F. C. Lee, W. G. Odendaal and J. D. van Wyk, “Improvement of EMI filter performance with parasitic coupling cancellation,” in Proc. IEEE Power Electronics Specialists Conference, PESC ’05, 2005, pp. 1780 – 1786.

[11] L. Zhao, R. Chen, J. D. van Wyk, “An integrated common mode and differential mode transmission line RF-EMI Filter,” in Proc. IEEE Power Electronics Specialists Conference, PESC ’04, vol. 6, 2004, pp. 4522-4526.

[12] Rengang Chen, J.D. van Wyk, Shuo Wang and W.G. Odendana, “Technologies and characteristics of integrated EMI filters for switching mode power supplies,” in Proc. IEEE Power Electronics, Specialists Conference, PESC’04, vol. 1, 2004, pp. 4873-4880.

[13] Hemphill H, Wallertz B. ; “Critical core parameters in the design of common mode supression chokes,” in Proc. IEEE Electromagnetic Interference and Compatibility, 1995, pp 334-336.

[14] T. C. Neugebauer, and D. J. Perreault, “Parasitic capacitance cancellation in filter inductors,” IEEE Trans. Power Electron., vol. 21, issue 1, pp. 282 – 288, 2006.

[15] S. Wang, Y. Maillet, F. Wang, R. Lai, R. Burgos and F. Luo, “Investigating EMI filter’s grounding of EMI filters in power electronics systems,” in Proc. IEEE Power Electronics Specialists Conference. PESC ’08, 2008, pp. 1625-1631.

[16] Moo, C.S., Y en, H .C., Hsieh, Y.C., and Chuang, Y .C. , “Integrated design of EMI filter and PFC low pass filter in power electronic converters,” IEE Proceedings. Electric Power Applications, vol. 150 , issue. 1, pp. 39–44 , 2003.

[17] Liu, D.H., and Jiang, J .G, “High frequency characteristic analysis of EMI filter in SMPS,” in Proc. IEEE Power Electronics Specialists Conference. PESC ’02, vol. 4. 2002, pp. 2039-2043.

[18] L. Dehong, and J. Jianguo, “High frequency model of common mode inductor for EMI analysis based on measurements,” in Proc. IEEE EMC 3rd International Symposium ’02, 2002, pp. 462-465.

[19] M. Mutoh, M. Kanesaki, J. Nakashima and M. Ogata, “A new method to Control common mode currents focusing on common mode current paths produced in motor drive systems,” in Proc. IEEE Industry Applications Conference , vol. 1, 2003.
pp. 459-466.

[20] L. Nan, and Y. Yugang, “A common mode and differential mode integrated EMI filter,” in Proc. IEEE Power Electronics and Motion Control Conference. IPEMC ’06.
vol. 1, 2006, pp. 1 – 5.

[21] Caponet. M.C, Profumo. F, Ferraris. L, Bertoz. A, and Marzella. D,
“Common and differential mode noise separation: comparison of two different approaches,” in Proc. IEEE Power Electronics Specialists Conference. PESC ’01. vol. 3, 2001, pp. 1383 – 1388.

[22] “Energy star of no load power consumption”
http://ec.europa.eu/energy/efficiency/ecodesign/doc/committee/2008_10_17_noload_conditon_electric_power_consumption.pdf

[23] S. Wang, F. C. Lee, and W. G. Odendaal, “Characterization, evaluation, and design of noise separator for conducted EMI noise diagnosis,” IEEE Trans. Power Electron.,
vol. 20, issue. 4, pp. 974-982. 2005.

[24] A. Nagel, R. W. De Donker, “Separating common mode and differential mode noise in EMI measurement,” EPE Journal. European Power Electronics, vol. 10, pp. 27-30. 2000.

[25] Guo Ting, D. Y. Chen and F. C. Lee, “Separation of the common-mode and differential-mode conducted EMI noise,” IEEE Trans., Power Electron., vol. 11, Issue 3, pp.480 – 488, May 1996.

[26] Rdus Odendaal, “Characterization, evaluation, and design of noise Separator for conducted EMI noise diagnosis”, IEEE Trans., Power Electron., vol. 20, Issue. 4,
pp. 974–982, July 2005.

[27] Nagel, A., and De Doncker, R.W., “Systematic design of EMI filter for power converters,” in Proc. IEEE Industry Applications Conference, vol. 4, 2000,
pp. 2523-2525.

[28] H.-I. Hsieh, D. Y. Chen and S. Qu, “A filter design procedure incorporating mixed-mode EMI noise for off-line switching power supplies,” in Proc. IEEE Power Electron. Motion Control Conference, vol. 3, 2004, pp. 1527–1532.

[29] F.Y., Chen, Y.P., Wu, Y.P., and Chen, Y .T. “A procedure for designing EMI filters for AC line applications,” IEEE Trans. Power Electron., vol. 11, issue. 1, pp. 170-181
, 1996.

[30] Caponet, M.C., Profumo, F., and Tenconi. “EMI filter design for power electronics,”
in Proc. Power Electronics Specialists Conference, PESC ’02. 2002, pp. 2027-2032.

[31] “Automatic X-Capacitor Discharge, CAPzero,”
Available: http://www.powerint.com/en/node/6005

[32] “mWsaver controller,” Available: http://www.fairchildsemi.com/ds/FS/FSB127H.pdf

[33] “Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment”, Cenelec, European Standard EN55022.

[34] “Emission standard for information technology equipment,” IEC EMC publications, CISPR 22.

[35] “Testing and measurement techniques - Surge immunity test,” IEC EMC publications,
IEC/TR 61000-4-5.

[36] “Limits for harmonic current emissions (equipment input current 16A per phase),”
IEC EMC publications, IEC 61000-3-2.

[37] Ming Xu, Chuan-Yun Wang, Chih-Chung Chen, [Power Supply Apparatus]U.S. Patent pending, application date, Jan. 2010.

QR CODE