簡易檢索 / 詳目顯示

研究生: 王騰
Teng - Wang
論文名稱: 腎動脈血管系統模型的動態流場與管壁剪應力
Pulsatile Flows and Wall Shear Stress in Renal Arterial System Model
指導教授: 黃榮芳
Rong-fang Huang
口試委員: 楊英芳
Ying-fang Yang
陳明志
Ming-zhi Chen
劉昌煥
Chang-huan Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 180
中文關鍵詞: 腎動脈脈動流
外文關鍵詞: Renal artery, Pulsatile Flows
相關次數: 點閱:159下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用質點軌跡流場觀察法(PTFV)與質點影像速度儀(PIV)針對人體腎動脈血管系統(Renal arterial system )中兩支主要分枝血管左腎動脈(Left Renal artery)、右腎動脈(Right Renal artery)進行研究,藉由對於腎動脈模型的實驗,探討真實的動態流場及壁面剪應力對於人體的影響。為了簡化實驗的複雜度,採用透明玻璃製成之腎動脈硬管模型,工作流體以水與甘油混合代替血液,並將工作流體視為牛頓流體且其黏滯係數為常數。流場溫度維持正常體溫37ºC,僅忽略血管的彈性及血管的錐度,降低影響實驗因素。使用血液泵(blood pump)輸出心臟脈波,頻率為1.2 Hz、4 L/min入口流量和45%/55%的收縮舒張比。觀察管內流場之結構衍化以及量測速度、壁面剪應力分佈。在實驗中可觀察到,當管路流經分枝時會發生分離現象。分離區發生在左腎動脈及右腎動脈入口處的內壁上,分離區內的流場型態包含分離流、渦漩拉伸等。在左、右腎動脈中,在心臟收縮初期兩血管的內側壁面所受到的壁面剪應力最小,容易造成低密度脂蛋白(LDL)在此區聚集產生動脈硬化脂肪斑塊,嚴重甚至會形成粥狀動脈硬化。左腎動脈及右腎動脈在心臟收縮初期,由於血液直接衝擊外側壁面造成強大的剪應力會作用在血管壁上並破壞其組織。一旦組織被破壞,血小板將匯聚在此處並凝結形成血栓,導致血液中的氧氣與養分無法運送到器官造成器官機能衰竭、壞死。


    The pulsatile flow characteristics and evolution process in a model which simulate the renal artery of human being is diagnosed by using the particle tracking flow visualization method (PTFV) and the particle image velocimeter (PIV). The renal artery model is made of transparent plexiglas material which has different dimension with three tubes (abdominal artery, left renal artery and right renal artery). Mixture of glycerol and water at 37oC is used in the experiment as a working fluid to mimic the blood flow. To simulate the pulsating blood as it came out from the human heart, a “pulsatile blood pump” is used. A 72 strokes/minute (1.2Hz) stroke rate, with a volume flow rate of 4 L/min and a 45%/55% systole/diastole ratio is adopted in this study. The temporal/spatial evolution processes of the flow pattern, velocity distribution, and wall shear stress during systolic and diastolic phases are presented and discussed. During the systole stroke, the separation of boundary layer from the inner wall near the branch is shown in the PIV results. These characteristic flow structures induce reverse and low speed flows therefore would increase the probability of plaque deposition around the inner wall of the renal artery. The measured shear stresses around the branch junctions are low while the measured shear stresses at the outer wall of the renal artery are high. The high shear stress at the outer wall of the renal artery might crack the fibrolipid plaque and collagenous cap of atherosclerotic. This would induce rapid assembling of platelets on the exposed connective tissues which form the thrombosis. Furthermore it diminishes the transport of oxygen and metabolites supplied to the organ.

    摘要…………………………...………………….……………………. i Abstract…………………….…………………………………………... ii 誌謝……………………………………………………………………. iii 目錄…………………...……………….…………………………….… iv 符號索引……………………………...………………………….……. vii 表圖索引……………………………………...…………………….…. ix 第一章 緒論………………………………...…………………….…... 1 1.1 研究動機…………………………………………………...…... 1 1.2 文獻回顧……………………………...…………………...…… 3 1.3 研究目標……………………………...…………………...…… 13 第二章 實驗設備、儀器與方法…………………………..…………. 14 2.1 腎動脈血管動態流場模擬設備.….……...….………..……….. 14 2.1.1 儲水槽……………………………...……………….…… 15 2.1.2 脈動血液泵…………………………..……………..…… 15 2.1.3 腎動脈血管模型(Renal artery).…………...………. 15 2.1.4 管路系統………………………………….……….…..… 16 2.2 實驗儀器………………………….…………………….…..…. 16 2.2.1 壓力轉換器……………………………………..…..…… 16 2.2.2 光電感應器…………….……….…………………..… 16 2.2.3 浮子式流量計…………………….……………….…..… 17 2.2.4 數據擷取與控制系統…………………………….……... 17 2.3 質點特性分析………………………………….…...……........... 17 2.4 質點軌跡流場觀察法(PTFV)……………………..……............ 23 2.5 質點影像速度儀(PIV)……………………………...………….. 25 2.5.1 PIV系統介紹…..……………….…………..………...….. 25 2.5.2 PIV系統硬體架構………………………..………..…….. 28 2.5.3 PIV系統軟體架構……..………….……………………... 30 2.5.4 時間平均…..…………….…………………..…………... 32 2.5.5 樣本平均..…………..………………………………….... 33 第三章 可視化的流場衍化型態(PTFV結果).……….…...…………. 35 3.1 質點軌跡流場可視化在腎動脈血管系統模型中所觀察到的流場結構衍化…………………………………………............... 37 3.1.1腎動脈血管系統正向對稱截面..………………………… 37 3.1.2左腎動脈橫截面所觀察到的流場結構衍化…………… 38 3.1.3右腎動脈橫截面所觀察到的流場結構衍化…………… 38 第四章質點影像速度儀量測的結果……..………………………….. 40 4.1質點影像速度儀在腎動脈血管系統模型量測的流場結構與衍化………...………………………………………………… 41 4.1.1 腎動脈血管系統正向對稱截面.………………………. 41 (a)瞬間流場衍化…………………………………………. 41 (b)相位平均流場型態……………………………………. 42 4.1.2 左腎動脈模型橫截面……………..……………………. 43 (a)瞬間流場衍化…………………………………………. 43 (b)相位平均流場型態……………………………………. 43 4.1.3 右腎動脈模型橫截面…………………………………. 44 (a)瞬間流場衍化…………………………………………. 44 (b)相位平均流場型態……………………………………. 44 第五章 速度分佈……….……….……………………………………. 46 5.1質點影像速度儀在腎動脈血管系統模型正向對稱截面量測的軸向速度分佈……………………….………..…………… 46 5.2質點影像速度儀在腎動脈血管系統模型中放大壁面的流場速度分佈…….………….………...………………………….. 47 5.2.1腎動脈血管模型I區靠近壁面的速度分佈……………… 47 5.2.2腎動脈血管模型II區靠近壁面的速度分佈…………… 48 5.2.3腎動脈血管模型III區靠近壁面的速度分佈……………… 48 5.2.4腎動脈血管模型IV區靠近壁面的速度分佈…………… 48 第六章 壁面剪應力分佈……………..…………...……………….…. 49 6.1壁面定律…………………………………………………... 50 6.2腎動脈模型正向對稱截面I區壁面剪應力分佈.………... 54 6.3腎動脈模型正向對稱截面II區壁面剪應力分佈………...... 55 6.4腎動脈模型正向對稱截面III區壁面剪應力分佈…......... 56 6.5腎動脈模型正向對稱截面IV區壁面剪應力分佈….…..... 57 第七章 結論與建議……………..………...……………………….…. 58 7.1結論………………………………………………………... 58 7.2建議………………………………………………………... 58 參考文獻………….…………………………………..……………..… 60

    [1] DeBakey, M. E., Lawrie, G. M., Glaeser, D. H., “Patterns of atherosclerosis and their surgical significance,” Annals of Surgery, Vol. 201, No. 2, 1985, pp. 115-131.
    [2] Abrams, J., “Chronic stable angina,” The New England Journal of Medicine, Vol. 352, No. 24, 2005, pp. 2524-2533.
    [3] Yu, S. C. M. and Zhao, J. B., “A steady flow analysis on the stented and non-stented sidewall aneurysm models,” Medical Engineering & Physics, Vol. 21, Issue 3, April 1999, pp. 133-141.
    [4] Yu, S. C. M., “Steady and pulsatile flow studies in Abdominal Aortic Aneurysm models using Particle Image Velocimetry,” International Journal of Heat and Fluid Flow, Vol. 21, Issue 1, February 2000, pp. 74-83.
    [5] Ku, D. N., “Blood flow in arteries,” Annual Review of Fluid Mechanics, Vol. 29, 1997, pp. 399-434.
    [6] Berger, S. A., Jou, L.-D., “Flows in stenotic vessel,” Annual Review of Fluid Mechanics, Vol. 32, 2000, pp. 347-382.
    [7] Kang, S. G., Tarbell, J. M., “The impedance of curved artery models,” J. Biomechanical Engineering, Vol. 105, Issue 3, Auguest 1983, pp. 275-282.
    [8] Yu, S. C. M., Zhao, J. B., “A steady flow analysis on the stented and non-stented side wall aneurysm models,” Medical Engineering and Physics, Vol. 21, April 1999, pp. 133-141.
    [9] Nerem, R. M., “Vascular fluid mechanics, the arterial wall, and atherosclerosis,” Journal of Biomechanical Engineering, Vol. 114, Auguest 1992, pp. 274-282.
    [10] Kjernes, M., Svindland, A., Walloe, L., Wille, S. O., “Localization of early atherosclerotic lesions in an arterial bifurcation in humans,” Acta. path. microbiol. scand. Sect. A, Vol. 89, 1981, pp. 35-40.
    [11] Malek, A. M., Alper, S. L., Izumo, S., “Hemodynamic shear stress and its role in atherosclerosis,” Journal of the America Medical Association, Vol. 282, No. 21, 1999, pp. 2035-2042.
    [12] Perktold, K., Hofer, M., Rappitsch, G., Loew, M., Kuban, B. D., and Friedman, M. H., “Validated computation of physiologic flow in a realistic coronary artery branch,” Journal of Biomechanics, Vol. 31, Issue 3, December 1998, pp. 217-228.
    [13] Pivkin, I. V., Richardson, P. D., Laidlaw, D. H., and Karniadakis, G. E., “Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model,” Journal of Biomechanics, Vol. 38, June 2005, pp. 1283-1290.
    [14] Nerem, R. M., Cornhill, J. F., “The role of fluid mechanics in atherogenesis,” J. Biomechanical Engineering, Vol. 102, August 1980, pp. 181-189.
    [15] Lei, M., Kleinstreuer, C., Truskey, G. A., “Numerical investigation and prediction of atherogenic sites in branching arteries,” J. Biomechanical Engineering, Vol. 117, August 1995, pp. 350-357.
    [16] D. Lee*, J.Y. Chen “ Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches,” Journal of Biomechanics, Vol. 35, March 2002, pp.1115-1122
    [17] Ku, D. N., Giddens, D. P., Zarins, C. K., Glagov, S., “Pulsatile flow and atherosclerosis in the human carotid bifurcation – positive correlation between plaque location and low and oscillating shear stress,” Arteriosclerosis, Vol. 5, February 1985, pp. 293-301.
    [18] Naruse, T., Tanishita, K., “Large curvature effect on pulsatile entrance flow in a curved tube: model experiment simulating blood flow in an aortic arch,” J. Biomechanical Engineering, Vol. 118, May 1996, pp. 180-186.
    [19] Singh, M. P., Sinha, P. C., Aggarwal, M., “Flow in the entrance of the aorta,” J. Fluid Mech., Vol. 87, 1978, pp. 97-120.
    [20] Pedley, T. J., “Viscous boundary layers in reversing flow,” J. Fluid Mech., Vol. 74, 1976, pp. 59-79.
    [21] Nerem, R. M., “Vascular fluid mechanics, the arterial wall, and atherosclerosis,” Journal of Biomechanical Engineering, Vol. 114, August 1992, pp. 274-283.
    [22] Berger, S. A., Jou, L-D., “Flows in Stenotic Vessels,” Annual Review of Fluid Mechanics, Vol. 32, January 2000, pp. 347-382.
    [23] Long, Q., Xu, X. Y., Ramnarine, K. V., and Hoskins, P., “Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis,” Journal of Biomechanics, Vol. 34, October 2001, pp. 1229-1242.
    [24] James E. Moore, Jr. David N. Ku “Pulsatile Velocity Measurements in a Model of the Human Abdominal Aorta Under Resting Conditions,” Journal of Biomechanical Engineering, Vol. 116, August 1994, pp. 337-346.
    [25] Varghese, S. S., Frankel, S. H., “Numerical Modeling of Pulsatile Turbulent Flow in Stenotic Vessel,” Journal of Biomechanical Engineering, Vol. 125, August 2003, pp. 445-460.
    [26] Chandran, K. B., Yearwood, T. L., Wieting, D. W., “An experimental study of pulsatile flow in curved tube,” J. Biomechanics, Vol. 12, Oct. 1979, pp. 793-805.
    [27] Tada, S., Oshima, S., Yamane, R., “Classification of pulsating flow patterns in curved pipes,” J. Biomechanical Engineering, Vol. 118, August 1996, pp. 311-317.
    [28] Tanya Shipkowitz, V.G.J. Rodgers, Lee J. Frazin, K.B. Chandran “Numerical study on the effect of steady axial flow development in the human aorta on local shear stresses in abdominal aortic branches,”
    J. Biomechanical Engineering, Vol. 31, June 1998, pp. 995-1007.
    [29] D. Lee, J.Y. Chen “ Numerical simulation of flow fields in a tube with two branches” J. Biomechanical Engineering, Vol. 33, August 2000, pp. 1305-1312.
    [30] Mirco Cosottini, Maria Chiara Michelassi, Huido Lazzarotti, “Renal arteries,”
    [31] Tokunori Yamamoto; Yasuo Ogasawara; Akihiro Kimura; Hiroyoshi Tanaka; Osamu Hiramatsu; Katsuhiko Tsujioka; M. John Lever; Kim H. Parker,; Christopher J.H. Jones; Colin G. Caro; Fumihiko Kajiya, “Blood Velocity Profiles in the Human Renal Artery byDoppler Ultrasound and Their Relationship to Atherosclerosis, Atherosclerosis, ”Arteriosclerosis, Thrombosis, and Vascular Biology, Vol.16, 1996, 99.172-177
    [32] HN Sabbah, ET Hawkins and PD Stein, “Flow separation in the renal arteries,” Arterioscler. Thromb. Vasc. Biol,Vol.4, 1984, pp.28-33
    [33] Taylor, G. I., “The criterion for turbulence in curved pipes,” Roy. Soc. Proc., Vol. 124, March 1929, pp. 243-249.
    [34] Keane, R. D., Adrian, R. J., “Theory of cross-correlation analysis of PIV images,” Applied Scientific Research, Vol. 49, 1992, pp. 191-215.
    [35] Fry, D. L., “Certain Histological and Chemical Responese of the Vascular Interface to Acutely Induced Mechanical Stress in the Arota of the Dog,” circulation Rch., Vol. 24, 1969, pp. 93-108.
    [36] Caro, C. G. Fitz-Gerald, J. M. and Schroter, R. C., “Atheroma and Arterial Wall Shear,” Proc. R. Soc. Lond., Vol. 177, 1971, pp. 109-159.
    [37]Gessner, F. B., “Hemodynamic Theories of Atherogenesis,Criculation Research,” circulation Rch., Vol. 33, 1973, pp. 259-266.
    [38] Choi, U. S., Talbot, L., Cornet, I., “Experimental study of wall shear rates in the entry region of a curved tube,” J. Fluid Mech., Vol. 93, 1979, pp. 465-489.
    [39] Bejan. A., John Wiley & Sons, New York, “Convection Heat Transfer”, 1984, pp. 227-278.
    [40] Clauser, F. H., “Turbulent boundary layers in adverse pressure gradients,” Journal of the Aeronautical Sciences, Vol. 21, February 1954, pp. 91-108.
    [41] Adrian, R. J., “Particle-imaging techniques for experimental fluid mechanics,” Annual Review of Fluid Mech., Vol. 23, 1991, pp. 261-304.
    [42] Huang, P. G., Bradshaw, P., “Law of the wall for turbulent flows in pressure gradients,” AIAA J., Vol. 33, No. 4, 1995, pp. 624-632.

    QR CODE