簡易檢索 / 詳目顯示

研究生: Idris Ibnu Malik
Idris - Ibnu Malik
論文名稱: 高表面積之Ti4O7承載白金於氧氣還原反應之探討
High Surface Area Ti4O7 Supported Platinum Catalyst for Oxygen Reduction Reaction
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
周宏隆
Hung-Lung Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 87
外文關鍵詞: Ti4O7
相關次數: 點閱:281下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Ti4O7 is a promising catalyst support material candidate due to its high conductivity and stability against corrosion, but obtaining high surface area Ti4O7 is very challenging. High surface area Ti4O7 support material was successfully synthesized by utilizing Ti(IV) ethoxide as titanium precursor and PEG 400 as reducing agent. The XRD result revealed that the best Ti(IV) ethoxide and PEG 400 ratio in Ti4O7 synthesis was 10:4 weight ratio. Since the synthesis utilized PEG 400 as reducing agent, 7.57 to 9.44 wt% amorphous carbon residue remained in the obtained Ti4O7. Physisorption analysis result revealed that it consisted of mesopores with average pore size distribution around 4-8 nm and the surface area was 154.9 to 187.6 m2 g-1. The result was supported by SEM images which clearly showed the existence of pore structure. The electronic conductivity range from 95.47 to 172.96 S cm-1, the value is much higher than the other titanium based materials. CV analysis results revealed that it was stable in acidic environment since no peaks were observed. Furthermore, platinum nanoparticles were successfully deposited on Ti4O7 support material by utilizing microwave-assisted polyol synthesis. Unfortunately, the ORR activity of 20 wt% Pt/Ti4O7 catalysts was lower than the commercial 20 wt% Pt/C in terms of the onset potential, kinetic current density at 0.9 V vs. RHE and mass activity. In addition, the amorphous carbon residue was not completely removed from the Ti4O7 support material.

ABSTRACT iii ACKNOWLEDGEMENT iv TABLE OF CONTENT vi LIST OF FIGURE ix LIST OF TABLE xiv CHAPTER 1 – OVERVIEW 1 1.1 Background 1 1.2 Motivation 6 CHAPTER 2 - LITERATURE REVIEW 7 2.1 Fuel Cell Catalyst 7 2.1.1 Carbon Corrosion 10 2.1.2 Oxygen Reduction Reaction 11 2.1.3 Electrocatalyst Characterization 13 2.2 Ti4O7 Synthesis 17 2.2.1 Recent Developments 18 2.2.2 Summary 24 CHAPTER 3 - EXPERIMENTAL SECTION 25 3.1 Chemicals and Equipments 25 3.1.1 Chemicals 25 3.1.2 Equipments 25 3.2 Synthesis Methodology 26 3.2.1 Synthesis of Ti4O7 Support Material 26 3.2.2 Synthesis of 20 wt% Pt/Ti4O7 Catalyst 26 3.3 Carbon removal of Ti4O7 Support Material 28 3.3.1 Extraction treatment 28 3.3.2 Solvent treatment 29 3.3.3 Acid-base treatment 30 3.4 Material Characterization 32 3.5 Electrochemical Measurement 32 CHAPTER 4 - CHARACTERIZATION OF Ti4O7 SUPPORT MATERIAL 37 4.1 XRD Results 38 4.2 Thermogravimetric Results 40 4.3 Physisorption Results 42 4.4 SEM Results 44 4.5 Electronic Conductivity Results 45 4.6 CV Analysis Results 45 4.7 Summary 47 CHAPTER 5 - CARBON REMOVAL OF Ti4O7 SUPPORT MATERIAL 48 5.1 Extraction Treatment Result 48 5.2 Solvent Treatment Result 49 5.3 Acid-Base Treatment Result 50 5.4 Summary 51 CHAPTER 6 - CHARACTERIZATION OF 20 wt% Pt/Ti4O7 CATALYST 53 6.1 XRD Results 54 6.2 Electrochemical Performance of 20 wt% Pt/Ti4O7 Catalyst 55 6.2.1 ECSA Evaluation 55 6.2.3 ORR Activity Evaluation 60 6.3 Summary 65 CHAPTER 7 - CONCLUSION AND OUTLOOK 67 7.1 Conclusion 67 7.2 Outlook 67 REFERENCES 68

1. Dresselhaus, M. S. & Thomas, I. L. Alternative energy technologies.
Nature 414, 332–337 (2001).
2. Schiermeier, Q., Tollefson, J., Scully, T., Witze, A. & Morton, O. Energy
alternatives: Electricity without carbon. Nature 454, 816–823 (2008).
3. Ogden, J. High hopes for hydrogen. Sci. Am. 295, 94–101 (2006).
4. Tollefson, J. Hydrogen vehicles: Fuel of the future? Nature 464, 1262–
1264 (2010).
5. Sharaf, O. Z. & Orhan, M. F. An overview of fuel cell technology:
Fundamentals and applications. Renew. Sustain. Energy Rev. 32, 810–853
(2014).
6. Zhang, Z., Liu, J., Gu, J. & Cheng, L. An overview of metal oxide
materials as electrocatalysts and supports for polymer electrolyte fuel cells.
Energy Environ. Sci 7, 2535–2558 (2014).
7. Yamamoto, K. et al. Size-specific catalytic activity of platinum clusters
enhances oxygen reduction reactions. Nat. Chem. 1, 397–402 (2009).
8. Wang, D. et al. Structurally ordered intermetallic platinum–cobalt core–
shell nanoparticles with enhanced activity and stability as oxygen reduction
electrocatalysts. Nat. Mater. 12, 81–87 (2012).
9. Hsieh, Y.-C. et al. Ordered bilayer ruthenium-platinum core-shell
nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Nat. Commun.
4, 2466 (2013).
10. Jang, J.-H. et al. Rational syntheses of core-shell Fex@Pt nanoparticles for
the study of electrocatalytic oxygen reduction reaction. Sci. Rep. 3, 2872
(2013).
11. Chang, S. H. et al. Structural and electronic effects of carbon-Supported
PtxPd1-x nanoparticles on the electrocatalytic activity of the oxygenreduction
reaction and on methanol tolerance. Chem. - A Eur. J. 16, 11064–
11071 (2010).
12. Chen, Z., Higgins, D., Yu, A., Zhang, L. & Zhang, J. A review on nonprecious
metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4,
3167 (2011).
13. Ioroi, T. et al. Platinum-titanium alloy catalysts on a Magnéli-phase
titanium oxide support for improved durability in Polymer Electrolyte Fuel
Cells. J. Power Sources 223, 183–189 (2013).
14. Kumar, A. & Ramani, V. K. Strong metal-support interactions enhance the
activity and durability of platinum supported on tantalum-modified
titanium dioxide electrocatalysts. ACS Catal. 4, 1516–1525 (2014).
15. Lavacchi, A., Miller, H. & Vizza, F. in Nanotechnology in Electrocatalysis
for Energy 170, 63–89 (Springer New York, 2013).
16. Wang, Y.-J., Wilkinson, D. P. & Zhang, J. Noncarbon support materials for
polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev. 111,
7625–51 (2011).
17. Andersson, S. et al. Phase Analysis Studies on the Titanium-Oxygen
System. Acta Chemica Scandinavica 11, 1641–1652 (1957).
18. Bartholomew, R. F. & Frankl, D. R. Electrical properties of some titanium
oxides. Phys. Rev. 187, 828–833 (1969).
19. Graves, J. E., Pletcher, D., Clarke, R. L. & Walsh, F. C. The
electrochemistry of Magnéli phase titanium oxide ceramic electrodes Part I.
The deposition and properties of metal coatings. J. Appl. Electrochem. 21,
848–857 (1991).
20. Ioroi, T. et al. Stability of Corrosion-Resistant Magnéli-Phase Ti4O7-
Supported PEMFC Catalysts at High Potentials. J. Electrochem. Soc. 155,
B321 (2008).
21. Ioroi, T., Siroma, Z., Fujiwara, N., Yamazaki, S. I. & Yasuda, K. Substoichiometric
titanium oxide-supported platinum electrocatalyst for
polymer electrolyte fuel cells. Electrochem. commun. 7, 183–188 (2005).
22. Zhu, R., Liu, Y., Ye, J. & Zhang, X. Magnéli phase Ti4O7 powder from
carbothermal reduction method: formation, conductivity and optical
properties. J. Mater. Sci. Mater. Electron. 24, 4853–4856 (2013).
23. Senevirathne, K., Hui, R., Campbell, S., Ye, S. & Zhang, J. Electrocatalytic
activity and durability of Pt/NbO2 and Pt/Ti4O7 nanofibers for PEM fuel
cell oxygen reduction reaction. Electrochim. Acta 59, 538–547 (2012).
24. Yao, C., Li, F., Li, X. & Xia, D. Fiber-like nanostructured Ti4O7 used as
durable fuel cell catalyst support in oxygen reduction catalysis. J. Mater.
Chem. 22, 16560 (2012).
25. Pang, Q., Kundu, D., Cuisinier, M. & Nazar, L. F. Surface-enhanced redox
chemistry of polysulphides on a metallic and polar host for lithium-sulphur
batteries. Nat. Commun. 5, 1–19 (2014).
26. Ismail, A. F., Naim, R. & Zubir, N. A. in Polymer Membranes for Fuel
Cells 27–49 (Springer US, 2009). doi:10.1007/978-0-387-73532-0_3
27. Ho, V. T. T., Pan, C. J., Rick, J., Su, W. N. & Hwang, B. J. Nanostructured
Ti0.7Mo0.3O2 support enhances electron transfer to Pt: High-performance
catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 133, 11716–
11724 (2011).
28. Ioroi, T. et al. Corrosion-Resistant PEMFC Cathode Catalysts Based on a
Magnéli-Phase Titanium Oxide Support Synthesized by Pulsed UV Laser
Irradiation. J. Electrochem. Soc. 158, C329 (2011).
29. Lv, H. & Mu, S. Nano-ceramic support materials for low temperature fuel
cell catalysts. Nanoscale 6, 5063–74 (2014).
30. Meier, J. C. et al. Design criteria for stable Pt/C fuel cell catalysts. Beilstein
J. Nanotechnol. 5, 44–67 (2014).
31. Yuan, X. Z. & Wang, H. in PEM Fuel Cell Electrocatalysts and Catalyst
Layers: Fundamentals and Applications 1–87 (Springer-Verlag, 2008).
doi:10.1007/978-1-84800-936-3_1
32. Lavacchi, A., Miller, H. & Vizza, F. in Nanotechnology in Electrocatalysis
for Energy 170, 25–61 (Springer New York, 2013).
33. Song, C. & Zhang, J. in PEM Fuel Cell Electrocatalysts and Catalyst
Layers: Fundamentals and Applications 89–134 (Springer-Verlag, 2008).
doi:10.1007/978-1-84800-936-3_2
34. Sarma, L. S., Taufany, F. & Hwang, B. J. Electrocatalyst Characterization
and Activity Validation - Fundamentals and Methods. Electrocatal. Direct
Methanol Fuel Cells From Fundam. to Appl. 115–163 (2009).
doi:10.1002/9783527627707.ch3
35. Su, L., Jia, W., Li, C.-M. & Lei, Y. Mechanisms for enhanced performance
of platinum-based electrocatalysts in proton exchange membrane fuel cells.
ChemSusChem 7, 361–78 (2014).
36. Hwang, B. J. et al. An Investigation of Structure−Catalytic Activity
Relationship for Pt−Co/C Bimetallic Nanoparticles toward the Oxygen
Reduction Reaction. J. Phys. Chem. C 111, 15267–15276 (2007).
37. Kitada, A. et al. Selective preparation of macroporous monoliths of
conductive titanium oxides Ti(n)O(2n-1) (n = 2, 3, 4, 6). J. Am. Chem. Soc.
134, 10894–8 (2012).
38. Li, X. et al. Magneli phase Ti4O7 electrode for oxygen reduction reaction
and its implication for zinc-air rechargeable batteries. Electrochim. Acta 55,
5891–5898 (2010).
39. Krishnan, P., Advani, S. G. & Prasad, A. K. Magneli phase TinO2n-1 As
corrosion-resistant PEM fuel cell catalyst support. J. Solid State
Electrochem. 16, 2515–2521 (2012).
40. Nguyen, S. T., Lee, J. M., Yang, Y. & Wang, X. Excellent durability of
substoichiometric titanium oxide as a catalyst support for Pd in alkaline
direct ethanol fuel cells. Ind. Eng. Chem. Res. 51, 9966–9972 (2012).
41. Wu, Q., Ruan, J., Zhou, Z. & Sang, S. Magneli phase titanium sub-oxide
conductive ceramic TinO2n−1 as support for electrocatalyst toward oxygen
reduction reaction with high activity and stability. J. Cent. South Univ. 22,
1212–1219 (2015).
42. Zhang, L. et al. Ti4O7 supported Ru@Pt core-shell catalyst for COtolerance
in PEM fuel cell hydrogen oxidation reaction. Appl. Energy 103,
507–513 (2013).
43. Zhao, H. et al. Pt catalyst supported on titanium suboxide for formic acid
electrooxidation reaction. Int. J. Hydrogen Energy 39, 9621–9627 (2014).
44. Tominaka, S., Tsujimoto, Y., Matsushita, Y. & Yamaura, K. Synthesis of
nanostructured reduced titanium Oxide: Crystal structure transformation
maintaining nanomorphology. Angew. Chemie - Int. Ed. 50, 7418–7421
(2011).
45. Kundu, D., Black, R., Berg, E. J. & Nazar, L. F. A highly active
nanostructured metallic oxide cathode for aprotic Li–O2 batteries. Energy
Environ. Sci. (2015). doi:10.1039/C4EE02587C
46. Ma, W. et al. Investigating electron-transfer processes using a biomimetic
hybrid bilayer membrane system. Nat. Protoc. 8, 439–50 (2013).
47. Zdravkov, B. D., Čermák, J. J., Šefara, M. & Janků, J. Pore classification in
the characterization of porous materials: A perspective. Cent. Eur. J. Chem.
5, 1158–1158 (2007).
48. Carmo, M., dos Santos, A. R., Poco, J. G. R. & Linardi, M. Physical and
electrochemical evaluation of commercial carbon black as electrocatalysts
supports for DMFC applications. J. Power Sources 173, 860–866 (2007).
49. Bahr, J. L., Mickelson, E. T., Bronikowski, M. J., Smalley, R. E. & Tour, J.
M. Dissolution of small diameter single-wall carbon nanotubes in organic
solvents? Chem. Commun. 193–194 (2001). doi:10.1039/b008042j
50. Shao, L. et al. Removal of amorphous carbon for the efficient sidewall
functionalisation of single-walled carbon nanotubes. Chem. Commun.
(Camb). 1, 5090–5092 (2007).
51. Skrabalak, S. E., Wiley, B. J., Kim, M., Formo, E. V. & Xia, Y. On the
polyol synthesis of silver nanostructures: Glycolaldehyde as a reducing
agent. Nano Lett. 8, 2077–2081 (2008).
52. Lee, K. Y., Liu, C. Y., Sung, C. C. & Hu, L. H. Influence of ink preparation
with the untreated and the burned Pt/C catalysts for proton exchange
membrane fuel cells. Int. J. Hydrogen Energy 39, 11454–11461 (2014).
53. Ngo, T. T., Yu, T. L. & Lin, H. L. Influence of the composition of
isopropyl alcohol/water mixture solvents in catalyst ink solutions on proton
exchange membrane fuel cell performance. J. Power Sources 225, 293–303
(2013).
54. Kim, J.-H., Ha, H. Y., Oh, I.-H., Hong, S.-A. & Lee, H.-I. Influence of the
solvent in anode catalyst ink on the performance of a direct methanol fuel
cell. J. Power Sources 135, 29–35 (2004).
55. Jung, C. Y., Kim, W. J. & Yi, S. C. Optimization of catalyst ink
composition for the preparation of a membrane electrode assembly in a
proton exchange membrane fuel cell using the decal transfer. Int. J.
Hydrogen Energy 37, 18446–18454 (2012).

QR CODE