簡易檢索 / 詳目顯示

研究生: 陳彥均
Yen-Chun Chen
論文名稱: 切換式電容電池平衡器之數學建模與性能評估
Mathematical Modeling and Performance Evaluation of Switched Capacitor-Based Battery Equalization Systems
指導教授: 劉益華
Yi-Hua Liu
口試委員: 王順忠
Shun-Chung Wang
鄧人豪
Jen-Hao Teng
邱煌仁
Huang-Jen Chiu
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 115
中文關鍵詞: 電池儲存系統切換式電容平衡器電池平衡器數學模型MATLAB模擬
外文關鍵詞: Battery storage system (BSS), Switched capacitor (SC) equalizer, Battery equalization mathematical model, MATLAB simulation
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  電池儲存系統(Battery Storage System, BSS)為現代電力應用中的關鍵系統之一,其應用包含:可再生能源系統和電動汽車等。然而,在電池儲存系統中,不同電池間常會存在充電不平衡的現象,這會降低系統之操作效率、可靠性和安全性。因此,許多文獻提出了將電池能量平衡的技術,而其中的切換式電容(Switched Capacitor, SC)平衡器因具有成本低、體積小和容易實現等優點,而受到許多關注。
  本論文針對七種切換式電容平衡器進行分析,包含:傳統型切換式電容平衡器、雙層切換式電容平衡器、模組化切換式電容平衡器、加入開關之切換式電容平衡器、加入電容之切換式電容平衡器、串並聯切換式電容平衡器和單切換式電容平衡器。首先,根據平衡器在充、放電時之動作,推導及建立數學模型,並提出評估各平衡器性能之方法;並以MATLAB數學模型模擬平衡時間,進行統計與分析,比較各切換式電容平衡器架構之性能,由模擬結果得知,當串聯電池數增加至八顆以上時,串並聯切換式電容平衡電路之平衡時間最短,雙層、模組化、鏈狀切換式電容平衡電路之平衡時間相近,而傳統行切換式電容平衡電路之平衡時間最長;最後,依照所選擇之七種平衡器拓撲,針對其電路設計複雜度、平衡速度和實際實現難易度做總結,可讓使用者可在不同狀態與需求下,有效選擇適合的架構。


  Battery storage system (BSS) is one of the key components in a number of modern power applications such as renewable energy systems and electric vehicles. However, charge imbalance among different batteries is very common in a BSS, which may impair the power efficiency, reliability and safety. Hence, various battery equalization methods have been proposed in the literatures. Among those battery equalizing techniques, the switched capacitor (SC) equalizer attracts many attentions due to its low cost, small size, and easy control.
  In this thesis, seven types of SC-based equalizer: conventional SC, double-tiered SC, modularized SC, chain structure SC type I, chain structure SC type II, series-parallel SC and single SC are studies. Mathematical models that describe the charging-discharging behaviors are first derived. Next, analytical methods are also developed to evaluate the performance. In addition, statistical analysis based on MATLAB simulation is also carried out to compare the performance of the seven SC-based equalization structures considered. Finally, summary of circuit design complexity, balancing speed and practical implementations of the seven compared topologies will be provided.

摘要      I Abstract II 誌謝      III 目錄      V 圖目錄      VIII 表目錄      XII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻探討 1 1.3 研究目的 3 1.4 內容大綱 4 第二章 電池平衡電路介紹 5 2.1 平衡電路架構分類 7 2.2 被動式平衡電路 8 2.3 主動式平衡電路 9 第三章 切換式電容平衡電路 13 3.1 傳統型切換式電容平衡電路 13 3.2 雙層切換式電容平衡電路 14 3.3 模組化切換式電容平衡電路 16 3.4 鏈狀切換式電容平衡電路 18 3.5 串並聯切換式電容平衡電路 22 3.6 單切換式電容平衡電路  24 3.7 各切換式電容平衡電路元件數比較 25 第四章 平衡器能量傳遞步數 27 4.1 最小能量傳遞步數定義  27 4.2 能量傳遞步數分析 28 第五章 平衡器數學模型建立與驗證 38 5.1 數學模型及參數設定 38 5.2 四顆電池串聯不同案例之平衡曲線模擬驗證 51 5.3 八顆電池串聯不同案例之平衡曲線模擬驗證 65 第六章 平衡時間之分析與比較 79 6.1 平均能量傳遞步數實際值計算 79 6.2 四顆電池之平衡電路平均平衡時間 84 6.3 八顆電池之平衡電路平均平衡時間 84 6.4 蒙地卡羅方法之平均平衡時間與平均能量傳遞步數比較 85 6.5 不同電池數量之平衡時間模擬結果分析 86 第七章 結論與未來展望 88 7.1 結論 88 7.2 未來展望 89 參考文獻 90

[1] C. Jin, X. Sheng and P. Ghosh, “Optimized Electric Vehicle Charging with Intermittent Renewable Energy Sources,” IEEE Journal of Selected Topics in Signal Processing, Vol. 8, No. 6, pp. 1063-1072, Dec. 2014.
[2] J. Arai, K. Iba, T. Funabashi, Y. Nakanishi, K. Koyanagi and R. Yokoyama, “Power Electronics and Its Applications to Renewable Energy in Japan,” IEEE Circuits and Systems Magazine, Vol. 8, No. 3, pp. 52-66, Aug. 2008.
[3] P. Yang and A. Nehorai, “Joint Optimization of Hybrid Energy Storage and Generation Capacity with Renewable Energy,” IEEE Transactions on Smart Grid, Vol. 5, No. 4, pp. 1566-1574, Jun. 2014.
[4] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez and A. Emadi, “Energy storage systems for automotive applications,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 6, pp. 2258-2267, Jun. 2008.
[5] M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. M. Hoff and O. Leitermann, M. L. Crow, S. Santhanagopalan, V. R. Subramanian, “Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications,” in Proceedings of the IEEE, Vol. 102, No. 6, pp. 1014-1030, Jun. 2014.
[6] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi and C. Tassoni, “Battery Choice and Management for New-Generation Electric Vehicles,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 5, pp. 1343-1349, Oct. 2005.
[7] A. Emadi, Y. J. Lee and K. Rajashekara, “Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 6, pp. 2237-2245, Jun. 2008.
[8] M. Uno and K. Tanaka, “Accelerated Charge-Discharge Cycling Test and Cycle Life Prediction Model for Supercapacitors in Alternative Battery Applications,” IEEE Transactions on Industrial Electronics, Vol. 59, No. 12, pp. 4704-4712, Dec. 2012.
[9] J. Chatzakis, K. Kalaitzakis, N. C. Voulgaris and S. N. Manias, “Designing a New Generalized Battery Management System,” IEEE Transactions on Industrial Electronics, Vol. 50, No. 5, pp. 990-999, Oct. 2013.
[10] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan and D. W. Novotny, “Design Considerations for Charge Equalization of an Electric Vehicle Battery System,” IEEE Symposium on Industrial Electronics and Applications, Vol. 35, No. 1, pp. 28-35, Jan./Feb. 1999.
[11] P. T. Krein and R.S. Balog, “Life Extension Through Charge Equalization of Lead-Acid Batteries,” in Proceedings of the 24th Annual International Telecommunications Energy Conference (INTELEC), pp. 516-523, Sep./Oct. 2002.
[12] P. T. Krein, S. West and C. Papenfuss, “Equalization Requirement for Series VRLA Batteries,” in Proceedings of the 16th Annual Battery Conference on Applications and Advances, pp. 125-130, Jan. 2001.
[13] S. West and P. T. Krein, “Equalization of Value-Regulated Lead-Acid Batteries: Issues and Life Test Result,” in Proceedings of the 22nd International Telecommunications Energy Conference (INTELEC), pp. 439-446, Sep. 2000.
[14] R. Ugle, Y. Li and A. Dhingra, “Equalization Integrated Online Monitoring of Health Map and Worthiness of Replacement for Battery Pack of Electric Vehicles,” Journal of Power Sources, Vol. 223, pp. 293-305, Feb. 2013.
[15] W. G. Hurley, Y. S. Wong and W. H. Wolfle, “Self-Equalization of Cell Voltages to Prolong the Life of VRLA Batteries in Standby Applications,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 6, pp. 2115-2120, Jun. 2009.
[16] L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, “A Review On the Key Issues for Lithium-Ion Battery Management in Electric Vehicles,” Journal of Power Sources, Vol. 226, pp. 272-288, Mar. 2013.
[17] W. C. Lee, D. Drury and P. Mellor, “Comparison of Passive Cell Balancing and Active Cell Balancing for Automotive Batteries,” in Proceedings of the Vehicle Power and Propulsion Conference (VPPC), pp. 1-7, Sep. 2011.
[18] T. A. Stuart and W. Zhu, “Modularized Battery Management for Large Lithium Ion Cells,” Journal of Power Sources, Vol. 196, No. 1, pp. 458-464, Apr. 2011.
[19] M. Einhorn, W. Roessler and J. Fleig, “Improved Performance of Serially Connected Li-Ion Batteries with Active Cell Balancing in Electric Vehicles,” IEEE Transactions on Vehicular Technology, Vol. 60, No. 6, pp. 2448-2457, Jul. 2011.
[20] S. Yarlagadda, T. T. Hartley and I. Husain, “A Battery Management System Using an Active Charge Equalization Technique Based on a DC/DC Converter Topology,” IEEE Transactions on Industry Applications, Vol. 49, No. 6, pp. 2720-2729, Nov./Dec.2013.
[21] Y. Lee, S. Jeon and S. Bae, “Comparison on Cell Balancing Methods for Energy Storage Applications,” Indian Journal of Science and Technology, Vol. 9, No. 17, pp1-7, May 2016.
[22] J. Cao, N. Schofield and A. Emadi, “Battery Balancing Methods: A Comprehensive Review,” in Proceedings of the Vehicle Power and Propulsion Conference (VPPC), pp. 1-6, Sep. 2008.
[23] J. G. Lozano, E. R. Cadaval, M. I. M. Montero and M. A. G.Martinez, “A Novel Active Battery Equalization Control with On-Line Unhealthy Cell Detection and Cell Change Decision,” Journal of Power Sources, Vol. 299, pp. 356-370, Dec.2015.
[24] Y. Zheng, M. Ouyang, L. Lu, J. Li, X. Han and L. Xu, “On-Line Equalization for Lithium-Ion Battery Packs Based on Charging Cell Voltages: Part 1. Equalization Based on Remaining Charging Capacity Estimation,” Journal of Power Sources, Vol. 247, pp. 676-686, Feb. 2014.
[25] C.-H. Kim, M.-Y. Kim, H.-S. Park and G.-W. Moon, “A Modularized Two-Stage Charge Equalizer with Cell Selection Switches for Series-Connected Lithium-Ion Battery String in an HEV,” IEEE Transactions on Power Electronics, Vol. 27, No. 8, pp. 3764-3774, Aug. 2012.
[26] P. A. Cassani and S. S. Williamson, “Design, Testing, and Validation of a Simplified Control Scheme for a Novel Plug-In Hybrid Electric Vehicle Battery Cell Equalizer,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 12, pp. 3956-3962, Dec. 2010.
[27] H.-S. Park, C.-H. Kim, K.-B. Park, G.-W. Moon and J.-H. Lee, “Design of a Charge Equalizer Based on Battery Modularization,” IEEE Transactions on Vehicular Technology, Vol. 58, No. 7, pp. 3216-3223, Sep. 2009.
[28] W. C. Lee and D. Drury, “Development of a Hardware-in-the-Loop Simulation System for Testing Cell Balancing Circuits,” IEEE Transactions on Power Electronics, Vol. 28, No. 12, pp. 5949-5959, Dec. 2013.
[29] D. V. Cadar, D. M. Petreus and T. M. Pararau, “An Energy Converter Method for Battery Cell Balancing.” in Proceedings of the 33rd International Spring Seminar on Electronics Technology (ISSE). pp. 290-293. May. 2010
[30] H. S. Park, C. E. Kim, C. H. Kim and G. W. Moon, J. H. Lee, “A Modularized Charge Equalizer for an HEV Lithium-Ion Battery String,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 5, pp. 1464-1476, May. 2009.
[31] Y. Xing, E. W. M. Ma, K. L. Tsui and M. Pecht, “Battery Management Systems in Electric and Hybrid Vehicles,” Energies, Vol. 4, No. 11, pp. 1840-1857, Oct. 2011.
[32] F. Baronti, R. Roncella and R. Saletti, “Performance Comparison of Active Balancing Techniques for Lithium-Ion Batteries,” Journal of Power Sources, Vol. 267, pp. 603-609, Dec. 2014.
[33] J. Gallardo-Lozano, E. Romero-Cadaval, M. I. Milanes-Montero and M. A. Guerrero-Martinez, “Battery Equalization Active Methods,” Journal of Power Sources, Vol. 246, pp. 934-949, Jan. 2014.
[34] G. K. Teja and S. R. S. Prabhaharan, “Smart Battery Management System with Active Cell Balancing,” Indian Journal of Science and Technology, Vol. 8, No. 19, pp. 1-6, Aug. 2015.
[35] T. M. Bui and S. Bae, “Active Clamped Forward Based Active Cell Balancing Converter,” Indian Journal of Science and Technology, Vol. 8, No. 26, pp. 1-6, Oct. 2015.
[36] S. Jeon, J.-J and Yun, S. Bae, “Comparative Study on the Battery State-of-Charge Estimation Method,” Indian Journal of Science and Technology, Vol. 8, No. 26, pp. 1-6, Oct. 2015.
[37] C. S. Moo, Y. C. Hsieh, I. S. Tsai and J. C. Cheng, “Dynamic charge Equalization for Series-Connected Batteries,” IEE Proceedings on Electric Power Applications, Vol. 150, No. 5, pp. 501-505, Sep. 2003.
[38] N. H. Kutkut, “Non-Dissipative Current Diverter Using a Centralized Multi-Winding Transformer,” in Proceedings of the 28th Annual IEEE Power Electronics Specialists Conference, pp. 648–654, Jun. 1997.
[39] Y.-S. Lee and M.-W. Cheng, “Intelligent Control Battery Equalization for Series Connected Lithium-Ion Battery Strings,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 5, pp. 1297-1307, Oct. 2005.
[40] J. Xu, S. Li, C. Mi, Z. Chen and B. Cao, “SOC Based Battery Cell Balancing with a Novel Topology and Reduced Component Count,” Energies, Vol. 6, No. 6, pp. 2726-2740, May 2013.
[41] C. S. Moo, Y. C. Hsieh and I. S. Tsai, “Charge Equalization for Series-Connected Batteries,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 2, pp. 704-710, Apr. 2003.
[42] F. Mestrallet, L. Kerachev, J.-C. Crebier and A. Collet, “Multiphase Interleaved Converter for Lithium Battery Active Balancing,” IEEE Transactions on Power Electronics, Vol. 29, No. 6, pp. 2874-2881, Jun. 2014.
[43] B. Dong, Y. Li and Y. Han, “Parallel Architecture for Battery Charge Equalization,” IEEE Transactions on Power Electronics, Vol. 30, No. 9, pp. 4906-4913, Sep. 2015.
[44] D.-H. Zhang, G.-R. Zhu, S.-J. He, S. Qiu, Y. Ma, Q.-M. Wu and W. Chen, “Balancing Control Strategy for Li-Ion Batteries String Based on Dynamic Balanced Point,” Energies, Vol. 8, No. 3, pp. 1830-1847, Mar. 2015.
[45] M. Einhorn, W. Guertlschmid, T. Blochberger, R. Kumpusch, R. Permann, F. V. Conte, C. Kral and J. Fleig, “A Current Equalization Method for Serially Connected Battery Cells Using a Single Power Converter for Each Cell,” IEEE Transactions on Vehicular Technology, Vol. 60, No. 9, pp. 4227-4237, Nov. 2011.
[46] Y. H. Hsieh, T. J. Liang, S. M. O. Chen, W. Y. Horng and Y. Y. Chung, “A Novel High-Efficiency Compact-Size Low-Cost Balancing Method for Series-Connected Battery Applications,” IEEE Transactions on Power Electronics, Vol. 28, No. 12, pp. 5927-5939, Dec. 2013.
[47] A. M. Imtiaz and F. H. Khan, “Time Shared Flyback Converter Based Regenerative Cell Balancing Technique for Series Connected Li-Ion Battery Strings,” IEEE Transactions on Power Electronics, Vol. 28, No. 12, pp. 5960-5975, Dec. 2013.
[48] 許甯易,「具雙向返馳式轉換器之串聯電池組電量主動平衡技術」,國立台灣科技大學電子工程系碩士學位論文,民國一百零四年七月。
[49] 林冠中,「運用數位控制雙向返馳式轉換器之電量平衡電路」,國立台灣科技大學電子工程系碩士學位論文,民國一百零四年七月。
[50] 吳詠嘉,「以模糊控制為基礎之鋰離子電池平衡電路」,國立台灣科技大學電機工程系碩士學位論文,民國一百零五年七月。
[51] J. W. Kimball and P. T. Krein, “Analysis and Design of Switched Capacitor Converters,” Twentieth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Vol. 3, pp. 1473-1477, Mar. 2005.
[52] Y. Ye and K. W. E. Cheng, “An Automatic Switched-Capacitor Cell Balancing Circuit for Series-Connected Battery Strings,” Energies, Vol. 9, No. 3, pp. 1-15, Fab. 2016.
[53] R. Lu, C. Zhu, L. Tian and Q. Wang, “Super-Capacitor Stacks Management System with Dynamic Equalization Techniques,” IEEE Transactions on Magnetics, Vol. 43, No. 1, pp. 254-258, Jan. 2007.
[54] A. C. Baughman and M. Ferdowsi, “Double-Tiered Switched-Capacitor Battery Charge Equalization Technique,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 6, pp. 2277-2285, Jun. 2008.
[55] C. Pascual and P. T. Krein, “Switched Capacitor System for Automatic Series Battery Equalization,” in Proceedings of the 12th IEEE Annual Applied Power Electronics Conference and Exposition (APEC), pp. 848-854, Feb. 1997.
[56] M.-Y. Kim, C.-H. Kim, J.-H. Kim and G.-W. Moon, “A Chain Structure of Switched Capacitor for Improved Cell Balancing Speed of Lithium-Ion Batteries,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 8, pp. 3989-3999, Aug. 2014.
[57] J. M. Henry and J. W. Kimball, “Practical Performance Analysis of Complex Switched-Capacitor Converters,” IEEE Transactions on Power Electronics, Vol. 26, No. 1, pp. 127-136, Jan. 2011.
[58] M. D. Seeman and S. R. Sanders, “Analysis and Optimization of Switched-Capacitor DC–DC Converters,” IEEE Workshops on Computers in Power Electronics (COMPEL), pp. 216-224, July. 2006.
[59] T. M. Van Breussegem, M. Wens, D. Geukens, D. Geys and M. S. J. Steyaert, “Area-Driven Optimisation of Switched-Capacitor DC/DC Converters,” Electronics Letters, Vol. 44, No. 25, pp. 1488-1489, Dec. 2008.
[60] T. Tanzawa, “On Two-Phase Switched-Capacitor Multipliers with Minimum Circuit Area,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 57, No. 10, pp. 2602-2608, Oct. 2010.
[61] Y. Yuanmao, K. W. E. Cheng and Y. P. B. Yeung, “Zero-Current Switching Switched-Capacitor Zero-Voltage-Gap Automatic Equalization System for Series Battery String,” IEEE Transactions on Power Electronics, Vol. 27, No. 7, pp. 3234-3242, Jul. 2012.
[62] E. Oyarbide, C. Bernal, P. Molina, L.A. Jiménez, R. Gálvez and A. Martínez, “Voltage Equalization of an Ultracapacitor Module by Cell Grouping Using Number,” Journal of Power Sources, Vol. 301, pp. 113-121, Jan. 2016.
[63] Y. Ye and K. W. E. Cheng, “Modeling and Analysis of Series–Parallel Switched-Capacitor Voltage Equalizer for Battery/Supercapacitor Strings,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 4, pp. 977-983, Dec. 2015.
[64] C. Lin, H. Mu, L. Zhao and W. Cao, “A New Data-Stream-Mining-Based Battery Equalization Method,” Energies, Vol. 8, No. 7, pp. 6543-6565, Jun. 2015.
[65] M. Daowd, M. Antoine, N. Omar, P. Bossche and J. Mierlo, “Single Switched Capacitor Battery Balancing System Enhancements,” Energies, Vol. 6, No. 4, pp. 2149-2174, Apr. 2013.
[66] H. Chen, L. Zhang “System-Theoretic Analysis of a Class of Battery Equalization Systems: Mathematical Modeling and Performance Evaluation”, IEEE Transactions on Vehicular Technology, Vol. 64, No. 4, pp. 1445-1457, Apr. 2015.
[67] G. A. Kobzev, “Switched-Capacitor Systems for Battery Equalization,” in Proceedings of the 6th International Scientific and Practical Conference of Students, Post-Graduates Young Sci. Modern Techniques and Technology (MTT), pp. 57-59, Mar. 2000.
[68] C. C. Chan, “The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles,” in Proceedings of the IEEE, Vol. 95, No. 4, pp. 704-718, Apr. 2007.
[69] M. Y. Kim, C. H. Kim, J. H. Kim and G. W. Moon, “A Modularized BMS with an Active Cell Balancing Circuit for Lithium-Ion Batteries in V2G System,” in Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 401-406, Oct. 2012.
[70] 吳敏旭,「串聯電池組電池管理系統之開發」,長庚大學電機研究所論文,民國九十三年五月。
[71] J. W. Kimball, B. T. Kuhn and P. T. Krein, “Increased Performance of Battery Packs by Active Equalization,” in Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 323-327, Sep. 2007.
[72] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan and D. W. Novotny, “Charge Equalization for Electric Vehicle Battery System,” IEEE Transaction on Aerospace and Electronic Systems, Vol. 34, No. 1, pp. 235-245, Jan. 1998.
[73] M. D. Zolot, M. Keyser, M. Mihalic, A. Pesaran, K. Kelly and A. Hieronymus, “Thermal Evaluation of the Honda Insight Battery Pack,” in Proceedings of the 36th Intersociety Energy Conversion Engineering Conference (IECEC), pp. 1-6, Aug. 2001.
[74] Powersim Inc., “PSIM User's Guide,” Available at: https://powersimtech.com.

無法下載圖示 全文公開日期 2022/08/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE