簡易檢索 / 詳目顯示

研究生: 韓毅祺
Yi-chi Han
論文名稱: 左手共振腔HBT雙頻壓控振盪器與傳輸線LC網路三頻帶壓控振盪器之設計
Design of Dual-Band Left-Handed Resonator HBT Voltage-Controlled Oscillator and a Triple-Band CMOS Voltage-Controlled Oscillator Using Inhomogeneous Transmission-Line LC Network
指導教授: 張勝良
Sheng-lyang Jang
徐敬文
Ching-wen Hsue
口試委員: 陳國龍
none
馮武雄
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 114
中文關鍵詞: 雙頻帶壓控振盪器三頻帶壓控振盪器
外文關鍵詞: dual-band VCO, triple-band VCO
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

首先,本論文提出一個左手LC網路和可變電容切換的HBT壓控振盪器,此振盪器被實現在台積電點一八矽鍺製程,晶片大小為0.709 × 1.077 mm2,此晶片為雙頻帶,高頻(低頻) 的可調範圍從5.335~5.585(3.95 ~ 4.45)GHz,FOM 為-188.14 (-188.15)dBc/Hz。此電路使用了兩個單元的左手LC 振盪器串聯作為雙頻帶共振腔,
並且讓LC 振盪器並聯電路下方的交叉耦合對來補償LC 振盪器的損耗。
其次,我們使用了可變電容模式的切換,設計出三頻帶壓控振盪器,此電路由MOSFET來組成交叉對,並包含了一個不均勻的右手傳輸線LC網路和兩組當作切換頻帶的背靠背可變電容。此振盪器被實現在台積電點一八矽鍺製程,核心功率消耗為2.38 mW,直流汲極源極偏壓為1.1V。此壓控振盪器可以產生不同頻率範圍的訊號8.72~9.086GHz,4.458~4.463GHz,和 2.474~2.873 GHz。此晶片的大小為0.709 × 1.077 mm2。
再來,我們使用一個利用矽鍺製程以HBT電晶體來實現交叉耦合對所設計的壓控振盪器,電容直接耦合的HBT交叉對可將其偏壓操作在C類模式去增加直流對交流的轉換效益。這個HBT的壓控振盪器被實現在台積電點一八矽鍺製程。此電路供應電壓為1.3V,功率消耗為4.2 mW,調整電壓從0~2V使得壓控振盪器的頻率可以操作在4.676 GHz 到 5.697 GHz。
最後,一個超寬鎖定範圍注入鎖定除四除頻器被實現在台積電點一八製程。此電路是以交叉耦合的壓控振盪器作為基礎,並加上兩個直接注入式的MOSFETs 線性混波器作共模注入。這個除四注入鎖定除頻器在注入訊號強度為0dBm時,鎖定範圍3.5GHz,注入訊號範圍為9.5GHz至13GHz(31%)。此晶片的大小為0.822 ×0.864 mm2,直流汲極源極偏壓為1.2V,核心功率消耗為12.02 mW。


First, we discuss a low phase noise HBT voltage-controlled oscillator (VCO) using a left-handed (LH) LC network and a pair of switching/tuning varactors. The proposed VCO has been implemented with the TSMC 0.18 μm SiGe 3P6M technology and the die area of the oscillator is 0.709 × 1.077 mm2. The VCO can generate differential signals in the high (low)-band frequency range of 5.335~5.585(3.95 ~ 4.45) GHz. The measured high (low)-band figure of merit (FOM) is -188.14 (-188.15)dBc/Hz. The VCO uses two units of left-handed (LH) LC resonator stacked in series, and the LC resonator is in shunt with a pair of cross-coupled transistors to compensate for the loss of LC resonator.

Secondly, by exploiting the varactor-mode switching, a triple-band (TB) oscillator is designed. The TB oscillator consists of a cross-coupled pair of MOSFETs, an inhomogeneous right-handed transmission (T-) line LC network and two pairs of back-to-back varactors for band switching. The proposed oscillator has been implemented with the TSMC 0.18 μm SiGe BiCMOS technology and the core power consumption is 2.38 mW at the dc drain-source bias of 1.1 V. The VCO can generate differential signals in the frequency range of 8.72~9.086GHz, 4.458~4.463GHz, and 2.474~2.873 GHz. The die area of the triple-band VCO is 1.125× 0.85 mm2.
Then, the thesis presents a voltage-controlled oscillator (VCO) where in cross-coupled SiGe HBT is designed. The direct-capacitive cross-coupled HBT can be biased in a class-C mode to increase the DC to AC power conversion efficiency. The proposed HBT VCO has been implemented with the TSMC 0.18μm SiGe 3P6M technology. At the supply voltage of 1.3V, the total power consumption is 4.2mW. The free-running frequency of the VCO is tuneable with the frequencies varying from 4.676 GHz to 5.697 GHz as the tuning voltage is varied from 0.0V to 2V. At the supply voltage of 1.2V, the simulated figure-of-merit is -194.5 dBc/Hz.

Finally, we study an ultra wide locking rangedivide-by-4 LC injection-locked frequency divider (ILFD)is proposed in the thesis and was implemented in the TSMC 0.18 μm1P6MCMOS process. The divide-by-4 ILFD is based on a cross-coupled voltage-controlled oscillator (VCO) having two direct injection MOSFETs and a common injection gate serving as two linear mixers. At the drain-source bias of 1.2 V, and at the incident power of 0 dBm, the locking range of the divide-by-4 ILFD is 3.5 GHz, from the incident frequencies of 9.5 GHz to 13.0 GHz that the percentage of 31%. The core power consumption is 12.02mW. The die area is 0.822 ×0.864mm2.

Table of Contents 摘要 I Abstract III 誌謝 V Chapter1 Introduction 1 1.1Research Background 1 1.2 Thesis Organization 4 Chapter2 Overview of the Voltage-Controlled Oscillators 6 2.1 Basic Theory of Oscillators 6 2.2Oscillation Conditions 10 2.2.1 Feedback Oscillators 10 2.3 Classification of Oscillators 13 2.3.1 Ring Oscillator 13 2.3.2 LC-Tank Oscillator 18 2.4 RLC-Tank research 33 2.4.1 Quality Factor 34 2.4.2 Inductor and Transformer 37 2.4.3 Capacitors and Varactors 48 2.5 Design Concepts of Voltage-Controlled Oscillator 54 2.5.1 Parameters of a Voltage-Controlled Oscillator 55 2.5.2 Phase Noise in Oscillator 57 Chapter3 Principles and Design Concepts of Injection Locking Frequency Divider 65 3.1 Principle of Injection Locked Frequency Divider 66 3.1.1 Locking Range 68 Chapter 4 Dual-Band Left-Handed Resonator HBT Voltage-Controlled Oscillator 71 4.1 Introduction 71 4.2 Circuit Design 76 4.3 Measurement Results 77 Chapter 5 A Triple-Band CMOS Voltage-Controlled Oscillator Using Inhomogeneous Transmission-Line LC Network 80 5.1 Introduction 80 5.2 Circuit Design 83 5.3 Measurement Results 86 Chapter 6 Low-Phase Noise Class-C LC-VCO Using Silicon-germanium Heterojunction Bipolar Transistors 90 6.1 Introduction 90 6.2 Circuit Design 93 6.3 Measurement Results 98 Chapter 7 An Ultra Wide-Locking Range Divide-by-4 Injection-Locked Frequency Divider Using Class-C Oscillator 99 7.1 Introduction 99 7.2 Circuit Design 101 7.3 Measurement Results 104 Chapter 8 Conclusion 107 Reference 109

[1] B. Razavi, “RF Microelectronics”, Upper Saddle River, NJ: Prentice Hall, 1998
[2] N. M.Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
[3] B. Razavi, “Design of Analog CMOS Integrated Circuit”,McGraw Hill,2008.
[4] G. Gonzalez , “Microwave Transistor Amplifiers Analysis And Design” , Prentice Hall 1997
[5] B.Razavi , Design of Integrated Circuits for Optical Communications”, Mc Graw Hill.
[6] S.J. Lee, B. Kim, K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme,” IEEE Journal of Solid-State Circuits, vol. 32, No. 2, February 1997.
[7] 劉隽宇, 翁若敏, “運用於IEEE 802.11a CMOS 頻率合成器的低雜訊寬調變範圍之壓控振盪器,” 2005.07.
[8] 李少華, 張勝良, “Implementation of New High Frequency CMOS VCOs and Injection-Locked Frequency Dividers,” 2007 04.
[9] A. Hajimiri, and T. H. Lee, “The design of low noise oscillators,” Kluwer Academic Publishers, 1999
[10] B. De Muer, M. Borremans, M.Steyaert, and G. Li Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
[11] S.Levantino, C.Samori, A.Bonfanti, S.L.J. Gierkink, A.L. Lacaita, and V. Boccuzzi, “frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003-1001, 2002.
[12] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
[13] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
[14] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
[15] C. P. Yue, C. Ryu, JackLau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
[16] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[17] E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661-664, June 1989.
[18] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[19] J. van der Tang, and D. Kasperkovitz, “Oscillator design efficiency: a new figure of merit for oscillator benchmarking,” IEEE International Symposium on Circuit and System (ISCAS), vol. 2, pp. 533-536, May 2000.
[20] J.J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
[21] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
[22] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
[23] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[24] A. Hajimiri and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
[25] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[26] J. Tang and D. Kasperkovitz, Oscillator Design Efficiency: A New Figure Of Merit For Oscillator Benchmarking.
[27]S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4injection
locked frequency divider with quadrature outputs,” IEEE Microw.Wireless Compon.Lett., vol. 17, no. 5, pp. 373–375, May 2007.
[28] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injectionlockeddivider,” in IEEE Int. Solid-State Circuits Conf. Dig.,pp. 2472–2481, Feb. 2006.
[29]S.-L.Jang, C.-H.Liu, C.-W.Chang, and M.-H.Juang," Alow voltage, low powerdivide-by-4 LC-tank injection-locked frequency divider, " Int. J. Electronics., vol. 98,no. 4, pp. 521-527, April 2011.
[30] S.-L.Jang, C. C. Liuand C.-W. Chung, ”A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon.Lett.,vol.19,no. 4,pp. 236-238, April 2009.
[31] Voinigescu, S. P., D. Marchesan, and M. A. Copeland, "Family of Monolithic Inductor-Varactor SiGe-HBT VCOs for 20-GHz to 30-GHz LMDS and fiber-optic receiver applications," RFIC Symp. Digest, pp.173-176, Jun 2000.
[32] J. Lee, Y. Kim, E. Lee, C. Kim and P. Roblin, “A 8-GHz SiGe HBT VCO design on a low resistive silicon substrate using GSML,” IEEE Trans. Circuits. Syst. I, vol.54, pp.2128-2136, 2007.
[33] A.I. Khalil and P. Katzin,”A low power high performance 4GHz SiGe HBT VCO, ” IEEE MTT-S International Microwave Symposium Digest, 2004.
[34] H. Zirath, R. Kozhuharov, M. Ferndahl, “Balanced Colpitt oscillator MMICs designed for ultra-low phase noise” IEEE J. Solid-State Circuits, pp. 2077-2086, vol. 40, no. 10, Oct. 2005.
[35] K. A. Tang, and S. P. Voinigescu, “Design and scaling of W-band SiGe BiCMOS VCOs,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1821–1833, Sep. 2007.
[36] M. Jahn, K. Aufinger, T. F. Meister, and A. Stelzer, “125 to 181 GHz fundamental-wave VCO chips in SiGe technology,” in IEEE RFIC Symp. Dig., Jun. 2012, pp. 87–90.
[37] A. R. Rofougaran, M. Rofougaran and A. Behzad, “Radios for Next-Generation Wireless Networks”, IEEE Microwave Magazine, pp. 38-45,March 2005.
[38] W Cao, Y. Tashiro, and Y. Itoh, “A dual-band SiGe HBT differential VCO using a control voltage for both band-switching and frequency-tuning,” Proceed. Asia-Pacific Microwave Conf.2010.
[39] Y.-J. E. Chen, W.-M. L. Kuo, J. Lee, J. D. Cressler, J. Laskar, and G. Freeman, “A low power Ka-band SiGe HBT VCO using line inductors,” IEEE Radio Frequency integrated Circuits Symp., Vol. 6-8, pp. 587 – 590, June 2004.
[40] C. F. Chang, and T. Itoh, “A dual-band millimeter-Wave CMOS oscillator with left-handed resonator,” IEEE Trans. Microw.Theory Tech., vol. 58, no. 5, pp. 1401–1409, May 2010.
[41] S.-L. Jang, W.-H. Lee, and C.-W. Hsue, ” Fully-integrated standing wave oscillator using composite right/left-handed LC network,” Microw. Opt. Technol. Lett., vol. 55, 5,pp.985-988, May. 2013.
[42] S.-L. Jang, H.-H. Lin and C.-W. Hsue,” Mode-switching left-handed standing wave voltage-controlled oscillator,”Microw. Opt. Technol. Lett. vol.55, 9,pp. 1977–2244, Sept. 2013.
[43] S.-M. Yim and K. K. O, “Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO,” IEEE Trans. Microwave Theory and Techniques, vol. 54, no. 1, pp. 74–81, Jan. 2006.
[44] S.-L. Jang, J.-F. Huang, Y.-S. Lin, and C.-W. Chang, ” Switched inductor dual-band CMOS cross-coupled VCO,”Analog Integr Circ Sig Process., vol. 74, no. 3, pp. 527-532, March, 2013.
[45] G. Li and E. Afshari, “A distributed dual-band LC Oscillator based on mode switching,” IEEE Trans. Microwave Theory and Techniques, vol.59, pp.99-107, Jan.2011.
[46] F. Tzeng, D. Pi, A. Safarian, and P. Heydari, “Theoretical analysis of novel multi-order LC oscillators,” IEEE Trans. On Circuit and System-II:Express briefs, vol.54, no. 3, pp. 287-291, Mar. 2007.
[47] W. Wu, J.R. Long, andR. B. Staszewski, “High-resolution millimeter-wave digitally controlled oscillators with reconfigurable passive resonators,” IEEE J. Solid State Circuits, 46(11), 2785-2794, 2013.
[48] S.-L. Jang, Y.-T. Chen, Y.-S. Lin, C.-W. Chang, and J.-F. Huang, ”A Dual-band cross-coupled oscillator using the varactor-switching mode technique,”Microw. Opt. Technol. Lett., vol. 55, 3,pp.485-488, March. 2013.
[49] J.D. Cressler, “SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 5, pp. 572-589, May 1998.
[50] E. Laskin, et al., “165-GHz Transceiver in SiGe Technology”, IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1087-1100, May 2008.
[51] S. Kurachi, T. Yoshimasu, H. Liu, N. Itoh, and K. Yonemura, “A SiGeBiCMOS VCO IC with highly linear Kvco for 5-GHz-band wireless LANs”, IEICE TRANS. ELECTRON., VOL.E90–C, NO.6 pp. 1228-1233, JUNE 2007
[52] J.-O. Plouchart, B.-U. Klepser, H. A. Ainspan, and M. Soyuer,“Fully-monolithic 3-V SiGe differential voltage-controlled oscillatorsfor 5-GHz and 17-GHz wireless applications,” in Proc. Eur.Solid-State Circuits Conf., Sept. 1998, pp. 332–335.
[53] J. Lee, Y.-G. Kim, E.-J. Lee, C.-W. Kim, and P. Roblin,, “A 8-GHz SiGe HBT VCO Design on a Low Resistive Silicon Substrate Using GSML,”IEEE J. Solid-State Circuits, vol. 54, no.10, pp. 2118–2136, 2007.
[54] D.Cordeau, J.-M.Paillot, “Minimum phase noise of an LC oscillator: determination of the optimal operating point of the active part,” Int. J. Electronics and Communications, 64, 9 (2010) 795-805.
[55] H. Zirath, R. Kozhuharov, and M. Ferndahl, “A balanced InGaP-GaAsColpitt-VCO MMIC with ultra-low phase noise,” 12thGaAsSymp., 64, 9 (2004) 37-40.
[56] A. Mazzanti and P. Andreani “Class-C harmonic CMOS VCOs, with a general result on phase noise”, IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2716-2729, Dec. 2008.
[57] A. Mazzanti and P. Andreani, “A 1.4 mW 4.90-to-5.65 GHz class-C CMOS VCO with an average FoM of 194.5 dBc/Hz,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 474–475.
[58] Y.-H. Chuang, S.-L. Jang, S.-H. Lee, R.-H. Yen and J.-J. Jhao, “5 GHz low power CMOS differential Armstrong VCOs with balanced current-reused topology ,” IEEE Microw. Wireless Compon. Lett., pp. 139-141, Feb. 2007.
[59] M.-D. Tsai, Y.-H. Cho and H. Wang,“A 5-GHz low phase noise differential colpitts CMOS VCO,” IEEE Microwave Wireless Compon. Lett., vol. 15, no 5, pp. 327-329, May 2005.
[60] C. M. Hung, B. Floyd and K. K. O, “Afully integrated 5.35-GHzCMOS VCO and a prescaler,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 1, pp. 17-22, Jan. 2001.
[61] T. Song, S. Ko, D.-H. Cho, H.-S. Oh, C. Chung and E. Yoon,“A 5 GHz transformer-coupled shifting CMOS VCO using bias-level technique,”IEEE RFIC Symp., pp.127-130, 2004.
[62] S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4injection locked frequency divider with quadrature outputs,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007.
[63] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injectionlockeddivider,” in IEEE Int. Solid-State Circuits Conf. Dig.,pp. 2472–2481, Feb. 2006.
[64] S.-L. Jang,C. C. Liuand C.-W. Chung,” A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol.19,no. 4,pp. 236-238, April 2009.
[65] Z.-D. Huang, C.-Y. Wu, and B.-C. Huang, “Design of 24-GHz 0.8-V1.51-mW coupling current-mode injection-locked frequency dividerwith wide locking range,” IEEE Trans. Microw. Theory Techn., vol.57, no. 8, pp. 1948–1958, Aug. 2009.
[66] S.-L. Jang, L.-Y. Tsai and C.-F. Lee, ” A CMOS switched resonator frequency divider tuned by the switch gate bias,” Microwave and Optical Technology Lett.,Vol. 50, no. 1, pp.222-225, Jan. 2008.
[67] C.-C. Chen, H.-W. Tsao, and H.Wang, “Design and analysis of CMOSfrequency dividers with wide input locking ranges,” IEEE Trans. Microw.Theory Techn., vol. 57, no. 12, pp. 3060–3069, Dec. 2009.
[68] Y.-H. Kuo, et al., “Design and Analysis of a 77.3% Locking-Range Divide-by-4 Frequency Divider,”IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pp. 2477-2485, Oct. 2011.
[69] A. Musa, K. Okada, and A. Matsuzawa, “Progressive mixing technique to widen the locking range of high division-ratio,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 3, pp. 1161-1173, Mar. 2013.
[70] S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang," A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider, " Int. J. Electronics., vol. 98,no. 4, pp. 521-527, April 2011.
[71] M.-C. Chuang, J.-J.Kuo, C.-H.Wang, and H. Wang, ”A 50 GHz divide-by-4 injection lock frequency divider using matching method’, IEEE Microw.Wireless Compon. Lett., vol. 18, pp. 344–346, May 2008.
[72] S.-L. Jang,C.-C. Fu. ” Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers’, Analog Integrated Circuits and Signal Processing, vol. 78, issue 2, pp. 523–528, February 2014.

無法下載圖示 全文公開日期 2019/07/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE