簡易檢索 / 詳目顯示

研究生: 張容瑋
Jung-Wei - Chang
論文名稱: 自調適橋梁整體耐震能力推論模式在橋梁防災預警之應用
Self-Tuned Seismic Capacity Inference Model for Bridge Disaster Prevention
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 郭斯傑
Sy-Jye Guo
潘南飛
Nang-Fei Pan
廖國偉
Kuo-Wei Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 130
中文關鍵詞: 側推分析損傷評估SOS-LSSVM橋梁通行失敗機率
外文關鍵詞: Seismic evaluation, pushover analysis, damage probability, SOS-LSSVM
相關次數: 點閱:281下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣位處地震帶,一旦發生大規模災害,將會造成橋梁倒塌或損壞及用路人傷亡,因此需要評估橋梁於不同地震強度下的損壞狀況,降低災害發生機率。然而台灣橋梁眾多,若要對每座橋梁皆進行結構分析,在運作上將會有時間及預算限制之困難。
    國內現行研究以橋梁下部結構-橋柱性能的耐震能力為主,較少同時考量橋梁整體結構,亦未將上部結構資料納入分析。然而上部結構耐震能力不足時,可能造成落橋等災害,影響用路人通行安全。
    本研究同時考慮橋梁上、下部各構件之耐震容量,進行41筆案例模型側推分析,透過損傷評估,求得四個損傷等級各節點有效地表加速度(EPA)下之損傷超越機率,作為案例輸出因子。本研究利用專家問卷、SPSS篩選彙整16個顯著影響因子,建立2844筆案例資料庫。應用生物共生演算法最小平方差支持向量機(SOS-LSSVM)建立橋梁整體耐震能力推論模式,將案例資料隨機分成10組,利用交叉驗證準則的概念進行訓練與測試。藉由模式訓練與測試,找出輸入(影響因子)與輸出(各損傷等級損傷超越機率)的映射關係,做出合理的推論。
    預測結果顯示SOS-LSSVM其結果優於其他推論方法,表示本研究應用SOS-LSSVM此模式更能有效且準確地做出預測。震時,橋管單位可以本研究模式結果,將推論結果代入橋梁通行失敗機率公式,進行排序,作為依序進行現場勘查之依據。


    Taiwan is located in the Circum-Pacific Seismic Zone. Earthquakes may cause the bridge to collapse, so we need to assess the condition of bridges damaged at different earthequake intensity to prevent the loss. However, there are thousands of bridges in Taiwan and it takes a lot of time and cost to do seismic evaluation on each bridge.
    Most research about seismic evaluation of the bridge focus on the capacity of pillars in Taiwan. Actually, the bridge may collapse if the capacity of upper structure is insufficient.
    This research takes into account the capacity of portions of a bridge to do the seismic capacity evaluation on 41 bridge models. After doing pushover analysis and damage assessment, the probability of damage can be aquired at four levels as the output in the inference model.
    The next step is filtering the 16 input factors with the questionnaire distributed to exports and SPSS, and establishing the database with 2844 data. Finally, the Symbiotic Organisms Search- Least Squares SVM (SOS-LSSVM) is applied to the database and the data is divided into 10 folds randomly. The concept of Cross-Validation is used for training and testing to find the relations between input and output data by SOS-LSSVM and establish Inference Model of Bridge Seismic Capacity.
    The result of SOS-LSSVM is better than other predictive methods. Hence, SOS-LSSVM can speculate damage probability of bridge effectively. If earthquake happens in the future, the governmrnt can use this inference model to aquire a damage probability at each level, substitute into equation of passage failure probability, sort the result, and follow the result to do the bridge survey in sequence.

    摘要 I Abstract II 致謝 III 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究範圍與限制 4 1.4研究內容及流程 5 1.4.1研究內容 5 1.4.2研究流程 6 1.5研究內容及流程 9 第二章 文獻回顧 10 2.1國內現行耐震評估方法 10 2.1.1初步評估方法 10 2.1.2詳細評估方法 13 2.2橋梁通行失敗機率 21 2.3反應曲面法 22 2.4倒傳類神經網路(BPNN) 23 2.5支持向量機(SVM) 24 2.6最小平方差支持向量機(Least Squares SVM) 26 2.7演化式支持向量機 (ESIM) 28 2.7.1快速混雜基因演算法(fmGA) 28 2.7.2演化式支持向量機 (ESIM) 29 2.8演化式最小平差支持向量機(ELSIM) 30 2.8.1差分進化演算法(DE) 30 2.8.2演化式最小平方差支持向量機(ELSIM) 31 2.9生物共生演算法最小平方差支持向量機(SOS-LSSVM) 32 2.9.1生物共生演算法(Symbiotic Organisms Search,SOS) 32 2.9.2生物共生演算法最小平方差支持向量機(SOS-LSSVM) 35 2.9.3 SOS-LSSVM特性 39 2.9.4 SOS-LSSVM限制 40 2.10模糊偏好關係(FPR) 40 第三章 橋梁整體耐震能力評估與 案例建置 43 3.1案例側推分析 43 3.2橋梁損傷評估 46 3.3橋梁整體損傷評估案例建置 51 3.4橋梁整體耐震能力影響因子確認 52 3.4.1第一階段篩選-橋梁整體耐震能力影響因子問卷 53 3.4.2 FPR量化定性因子 58 3.4.3收集橋梁案例之影響因子資料 62 3.4.4 第二階段因子篩選 65 3.5 案例資料庫建立 80 第四章 建立橋梁整體耐震能力推論模式 81 4.1 推論模式建立 81 4.2 模式驗證 85 4.2.1 本研究模式預測結果 85 4.2.2 不同模式比較 85 4.3模式應用 86 4.3.1 案例描述 86 4.3.2 案例分析 87 4.3.3 推論模式應用流程 89 4.3.4 與傳統方法比較 92 第五章 結論與建議 93 5.1結論 93 5.2建議 94 參考文獻 95 附錄A 案例統計表 98 附錄B 橋梁整體耐震能力影響因子問卷調查(一) 99 附錄C 橋梁整體耐震能力影響因子問卷調查(二) 103 附錄D 定性選項量化表 116

    1. 張國鎮、蔡益超、張荻薇、宋裕祺、廖文義、柴駿甫、洪曉慧、劉光晏、吳弘明、戚樹人、陳彥豪,國家地震工程中心,公路橋梁耐震能力評估及補強準則之研究,NCREE-09-028,2009。
    2. 交通部,交通技術標準規範類公路工程部橋梁耐震設計規範,ISBN:978-986-01-6017-8,2008。
    3. 呈瑞忠,「考慮回復性能之橋梁補強效益研究」,國立臺灣科技大學碩士論文,2015。
    4. Kuang-Yen Liu, Witarto, Kuo-Chun Chang, “Evaluation of Fu-R-T (Modified R-μ-T) Concept on Seismic Evaluation of Bridge Column” Taiwan National Center for Research on Earthquake Engineering (NEREE)
    5. 台北市政府工務局新建工程處,台北市橋梁耐震評估工作期中報告,台灣世曦工程顧問股份有限公司,2014。
    6. 劉季宇、葉錦勳、張國鎮,國家地震研究中心,公路橋梁地震早期損失評估資料庫建置與模組開發之研究(1/2),2010。
    7. 趙衍剛、小野徹郎,応答曲面法ズプペ骨組ЁЗЪуソ構造信頼性解析,日本建築学会搆造系論文集,1997
    8. 吳育偉,「物件導向演化式支持向量機推論模式於營建管理決策之應用」,國立臺灣科技大學博士論文,2007。
    9. 歐昱辰、郭陳風、劉澄洲,腐蝕鋼筋之拉力行為,土木水利,第四十一卷,第二期,2014。
    10. 鄭明淵等,「橋梁通阻檢測分析模式建立研究」,交通部運輸研究所,2011。
    11. M.-Y. Cheng, Y.-W. Wu, ”Evolutionary support vector machine inference system for construction management” , Automation in Construction, vol. 18, pp. 597-604, 2009.
    12. M.-Y. Cheng, P.M. Firdausi, D. Prayogo, “High-performance concrete compressive strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT)” , Engineering Applications of Artificial Intelligence, vol. 29, pp. 104-113, 2014.
    13. M.-Y. Cheng, M.-T. Cao, “Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams”, Engineering Applications of Artificial Intelligence, vol. 28, pp. 86-96, 2014.
    14. M.-Y. Cheng, D.K. Wibowo, D. Prayogo, A.F.V. Roy, “Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model”, Journal of Civil Engineering and Management, vol. 21,no.7, pp. 881-892, 2015.
    15. M.-Y. Cheng, N.-D. Hoang, Y.-W. Wu, “Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: A Taiwan case study”, Automation in Construction, vol. 35, pp. 306-313, 2013.
    16. M.-Y. Cheng, A.F.V. Roy, “Evolutionary fuzzy decision model for cash flow prediction using time-dependent support vector machines”, International Journal of Project Management, vol. 29, pp. 56-65, 2011.
    17. D. Prayogo, “A Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete”, in: Department of Construction Engineering, National Taiwan University of Science and Technology, Taiwan, 2012.
    18. M.-Y. Cheng, D. Prayogo, Y.-W. Wu, “Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete Mixture”, Journal of Computing in Civil Engineering, vol.28, no. 4, pp. 06014003, 2014.
    19. D.E. Goldberg, K. Deb, H. Kaegupta, G. Harik, “Rapid, accurate optimization of difficult problems using fast messy genetic algorithms”, Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 56– 64, 1993.
    20. Suykens, J., et al., “Least Square Support Vector Machines”, World Scientific Publishing Co. Pte. Ltd., 2002.
    21. M.-Y. Cheng, N.-D. Hoang, ”Evolutionary Least Squares Support Vector Machine – Userguide”, Technical Report, National Taiwan Univ. of Sci. and Tech., 2012.
    22. 許淑婷,利用快速混雜基因演算法與模擬機制建立設計專案作業程序最佳化之研究,碩士論文,國立成功大學,2006
    23. K.V. Price, R.M. Storn, J.A. Lampinen, ”Differential Evolution A Practical Approach to Global Optimization”, Springer-Verlag, 2005.
    24. R Storn, K. Price, “Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces”, J. Global Optim, vol. 11, pp. 341–359, 1997.
    25. M.-Y. Cheng, D. Prayogo, “Symbiotic Organisms Search: A new metaheuristic optimization algorithm”, Computers & Structures, vol. 139, pp. 98-112, 2014.
    26. G.G. Tejani, V.J. Savsani, V.K. Patel, “Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization”, Journal of Computational Design and Engineering, 2016.
    27. M.-Y. Cheng, D. Prayogo, D.-H. Tran, “Optimizing Multiple-Resources Leveling in Multiple Projects Using Discrete Symbiotic Organisms Search”, Journal of Computing in Civil Engineering,vol.30, no. 3,pp.04015036, 2015.
    28. D.-H. Tran, M.-Y. Cheng, D. Prayogo, “A novel Multiple Objective Symbiotic Organisms Search (MOSOS) for time–cost–labor utilization tradeoff problem”, Knowledge-Based Systems, vol. 94, pp. 132-145, 2016.
    29. M.-Y. Cheng, C.-K. Chiu, Y.-F. Chiu, Y.-W. Wu, Z.-L. Syu, D. Prayogo, C.-H. Lin, “SOS optimization model for bridge life cycle risk evaluation and maintenance strategies”, Journal of the Chinese Institute of Civil and Hydraulic Engineering, vol. 26, pp. 293-308, 2014.
    30. S. Duman, “Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones”, Neural Computing and Applications, 2016.
    31. H. Kamankesh, V.G. Agelidis, A. Kavousi-Fard, “Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand”, Energy, vol. 100, pp. 285-297, 2016.
    32. E. Ruskartina, V.F. Yu, B. Santosa, A.A.N.P. Redi, “Symbiotic Organism Search (SOS) for Solving the Capacitated Vehicle Routing Problem”, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, vol. 101, pp. 857-861, 2015.
    33. A. Panda, S. Pani, “A Symbiotic Organisms Search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems”, Applied Soft Computing, vol. 46 pp. 344-360, 2016.
    34. M.-Y. Cheng, D. Prayogo, Y.-W. Wu, (in preparation), “Predicting the Pavement Rutting Behavior of Asphalt Mixtures Using Symbiotic Organisms Search - Least Squares Support Vector Machine Inference Model”, Construction and Building Materials.
    35. E. Herrera-Viedma, F. Herrera, F. Chiclana, M. Luque, ”Some issues on consistency of fuzzy preference relations”, European Journal of Operational Research, vol. 154, pp. 98-109,2004.
    36. Tien-Chin Wang, Tsung-Han Chang, “Forecasting the probability of successful knowledge management by consistent fuzzy preference relations”, Expert Systems with Applications, vol. 32, pp. 801-813, 2007.
    37. Lewis, E. B., “Control of body segment differentiation in Drosophila by the bithorax gene complex”, Embryonic Development, Part A: Genetics Aspects, Edited by Burger, M. M. and R. Weber. Alan R. Liss, New York, pp. 269-288, 1982.
    38. 徐瑞甫,「橋梁耐震能力診斷模式之建立-應用演化式支持向量機推論模式」,國立臺灣科技大學碩士論文,2010

    QR CODE