簡易檢索 / 詳目顯示

研究生: 賴宗新
Zong-Sin Lai
論文名稱: 還原反應對於次臨界流體萃取廢棄汽車觸媒轉化器中之貴重金屬影響
Effects of Reduction Reaction on Subcritical Water Extraction of Noble Metals from Spent Automotive Catalytic Converter
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 顧洋
Young Ku
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 86
中文關鍵詞: 汽車觸媒轉化器有機酸鉑族金屬回收次臨界水萃取
外文關鍵詞: Automotive catalytic converter, Cerium, Organic acid, Platinum group metals, Recovery, Subcritical water extraction
相關次數: 點閱:254下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鉑族金屬中鉑、鈀及銠和稀土元素鈰,因為其優秀的物理及化學特性,被廣泛運用在各個領域,尤其是在汽車觸媒轉化器。相較採集天然礦床,從廢汽車觸媒轉化器中回收這些貴重金屬更為永續與環境友善,而且具有經濟價值。本研究的目的主要為利用次臨界水萃取回收廢汽車觸媒轉化器中的鉑、鈀、銠及鈰,並探討使用檸檬酸及抗壞血酸作為還原劑及浸出劑對貴金屬萃取的可能性,並且比較了單純使用有機酸,以及有機酸與鹽酸混合作為浸出劑的萃取效率。其中為確認檸檬酸及抗壞血酸的還原反應及其影響,透過表面分析來探討並解析其中的機制。
實驗結果顯示,單純使用抗壞血酸進行次臨界水萃取實驗後,因為抗壞血酸的酸度過低,無法有效溶出貴金屬;混合鹽酸與抗壞血酸或檸檬酸的實驗結果顯示,鹽酸足以提升酸度,令抗壞血酸有效還原四價鈰為三價鈰,導致鈰的萃取效率由24.42%在1.0M與2.0M抗壞血酸濃度下分別提升到76.20%及67.13%;然而鉑族金屬的萃取效率卻大幅下降,因為抗壞血酸的加入會將鉑族金屬與氯錯合物還原成固體金屬元素態。透過平衡模擬的結果可以得知,主要透過還原金屬-氯離子錯合物及三價鈰進行。


The aim of this study is to recover platinum group metals (PGM) such as platinum (Pt), palladium (Pd), and rhodium (Rh), as well as cerium (Ce) from spent automotive catalytic converter by using subcritical water extraction (SWE). Both citric acid and ascorbic acid were used as reducing and leaching agents for the extraction of valuable metals. The reduction reactions and its influence on leaching efficiency were assessed by XPS analysis.
In the SWE experiments using pure citric acid and ascorbic acid, the leaching was not effective owing to the insufficient acidity. When using mixture of HCl with ascorbic acid, the acidity was raised by HCl while ascorbic acid could reduce Ce(IV) to Ce(III), resulting in a significant increase in the leaching efficiency of Ce, from 24.42% to 76.20% and 67.13%, respectively, at 1.0 M and 2.0 M of ascorbic acid. However, the extraction efficiency of PGMs decreased significantly because the addition of ascorbic acid reduced the PGMs chloro-complexes to a solid elemental metal state. This approach could potentially be developed into a selective extraction of PGM and Ce from spent automotive converters.

摘要 I ABSTRACT II OUTLINE IV LIST OF FIGURES VI LIST OF TABLES IX CHAPTER 1 INTRODUCTION 1-1 1.1 Background 1-1 1.2 Objective of study 1-1 CHAPTER 2 LITERATURE REVIEW 2-1 2.1 Automotive catalytic converter 2-1 2.2 Platinum group metal 2-2 2.3 Cerium 2-3 2.4 PGMs and Ce in spent automotive catalytic converters 2-4 2.5 Recovery PGMs and Ce from spent automotive catalytic converter 2-6 2.6 Subcritical water extraction (SWE) 2-9 2.7 Organic acid leaching 2-10 CHAPTER 3 MATERIALS AND METHODS 3-1 3.1 Materials and regents 3-1 3.2 Instrument 3-2 3.3 Methods 3-3 3.3.1 Experimental framework and procedures 3-3 3.3.2 Sample analysis 3-4 3.3.3 Total metal content 3-6 3.3.4 Subcritical water extraction (SWE) 3-8 3.3.5 Pre-reduction 3-9 3.3.6 Thermodynamic modeling software-PHREEQC 3-10 CHAPTER 4 RESULTS AND DISCUSSION 4-1 4.1 Characterization of spent automotive catalyst converter 4-1 4.1.1 Chemical compositions by XRF 4-1 4.1.2 Surface analysis by FESEM-EDS 4-2 4.1.3 Crystallization analysis by XRD 4-3 4.1.4 Total metal content 4-5 4.2 Subcritical water extraction (SWE) 4-9 4.2.1 Effect of pre-reduction 4-9 4.2.1.1 Citric acid 4-10 4.2.1.2 Ascorbic acid 4-12 4.2.2 Pure acid reagent 4-19 4.2.2.1 Effect of ascorbic acid concentration 4-19 4.2.2.2 Effect of temperature 4-20 4.2.3 Mixed acid reagent 4-21 4.3 PHREEQC simulation 4-31 CHAPTER 5 CONCLUSIONS AND RECOMMENDATION 5-1 5.1 Conclusions 5-1 5.2 Recommendations 5-2 REFERENCE R-1 APPENDIX A-1

Atia, T. A., & Spooren, J. (2021). Fast microwave leaching of platinum, rhodium and cerium from spent non-milled autocatalyst monolith. Chemical Engineering and Processing-Process Intensification, 164, 108378.
Atia, T. A., Wouters, W., Monforte, G., & Spooren, J. (2021). Microwave chloride leaching of valuable elements from spent automotive catalysts: Understanding the role of hydrogen peroxide. Resources, Conservation and Recycling, 166, 105349.
Bahaloo-Horeh, N., & Mousavi, S. M. (2020). Comprehensive characterization and environmental risk assessment of end-of-life automotive catalytic converters to arrange a sustainable roadmap for future recycling practices. Journal of Hazardous Materials, 400, 123186.
Bahaloo-Horeh, N., & Mousavi, S. M. (2022). Efficient extraction of critical elements from end-of-life automotive catalytic converters via alkaline pretreatment followed by leaching with a complexing agent. Journal of Cleaner Production, 344, 131064.
Beaudoux, X., Virot, M., Chave, T., Durand, G., Leturcq, G., & Nikitenko, S.I. (2016). Vitamin C boosts ceria-based catalyst recycling. Green Chemistry, 18(12), 3656-3668.
Colucci, J., Montalvo, V., Hernandez, R., & Poullet, C. (1999). Electrochemical oxidation potential of photocatalyst reducing agents. Electrochimica acta, 44(15), 2507-2514.
Ding, Y., Zhang, S., Liu, B., Zheng, H., Chang, C. C., & Ekberg, C. (2019). Recovery of precious metals from electronic waste and spent catalysts: A review. Resources, Conservation and Recycling, 141, 284-298.
de Oliveira Demarco, J., Cadore, J. S., Veit, H. M., Madalosso, H. B., Tanabe, E. H., & Bertuol, D. A. (2020). Leaching of platinum group metals from spent automotive catalysts using organic acids. Minerals Engineering, 159, 106634.
Dey, S., & Mehta, N. S. (2020). Automobile pollution control using catalysis. Resources, Environment and Sustainability, 2, 100006.
Eskina, V. V., Dalnova, O. A., Filatova, D. G., Baranovskaya, V. B., & Karpov, Y. A. (2020). Direct precise determination of Pd, Pt and Rh in spent automobile catalysts solution by high-resolution continuum source graphite furnace atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 165, 105784.
Fajar, A. T., Hanada, T., & Goto, M. (2021). Recovery of platinum group metals from a spent automotive catalyst using polymer inclusion membranes containing an ionic liquid carrier. Journal of Membrane Science, 629, 119296.
Golmohammadzadeh, R., Faraji, F., & Rashchi, F. (2018). Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review. Resources, Conservation and Recycling, 136, 418-435.
Jamshidbek, S., Bakhtiyor, M., & Islom, K. (2022). Automobile Pollution Control Using Catalysis. Involta Scientific Journal, 1(6), 40-68.
Karim, S., & Ting, Y. P. (2021). Recycling pathways for platinum group metals from spent automotive catalyst: A review on conventional approaches and bio-processes. Resources, Conservation and Recycling, 170, 105588.
Karim, S., & Ting, Y. P. (2020). Ultrasound-assisted nitric acid pretreatment for enhanced biorecovery of platinum group metals from spent automotive catalyst. Journal of Cleaner Production, 255, 120199.
Kotoulas, I., Schizodimou, A., & Kyriacou, G. (2013). Electrochemical reduction of formic acid on a copper-tin-lead cathode. The Open Electrochemistry Journal, 5(1).
Li, M., Pan, X., Jiang, M., Zhang, Y., Tang, Y., & Fu, G. (2020). Interface engineering of oxygen-vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction. Chemical Engineering Journal, 395, 125160.
Li, L., Bian, Y., Zhang, X., Guan, Y., Fan, E., Wu, F., & Chen, R. (2018). Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste management, 71, 362-371.
Niemelä, M., Pitkäaho, S., Ojala, S., Keiski, R. L., & Perämäki, P. (2012). Microwave-assisted aqua regia digestion for determining platinum, palladium, rhodium and lead in catalyst materials. Microchemical Journal, 101, 75-79.
Nayaka, G. P., Zhang, Y., Dong, P., Wang, D., Zhou, Z., Duan, J., ... & Santhosh, G. (2019). An environmental friendly attempt to recycle the spent Li-ion battery cathode through organic acid leaching. Journal of Environmental Chemical Engineering, 7(1), 102854.
Omrani, M., Goriaux, M., Liu, Y., Martinet, S., Jean-Soro, L., & Ruban, V. (2020). Platinum group elements study in automobile catalysts and exhaust gas samples. Environmental Pollution, 257, 113477.
Okonkwo, E. G., Wheatley, G., & He, Y. (2021). The role of organic compounds in the recovery of valuable metals from primary and secondary sources: a mini-review. Resources, Conservation and Recycling, 174, 105813.
PGM market report. (2022).
Sasaki, H., & Maeda, M. (2014). Zn-vapor pretreatment for acid leaching of platinum group metals from automotive catalytic converters. Hydrometallurgy, 147, 59-67.
Tang, H., Peng, Z., Tian, R., Ye, L., Zhang, J., Rao, M., & Li, G. (2022). Recycling of platinum-group metals from spent automotive catalysts by smelting. Journal of Environmental Chemical Engineering, 108709.
Trinh, H. B., Lee, J. C., Kim, S., & Kim, J. (2020). Recovery of cerium from spent autocatalyst by sulfatizing–leaching–precipitation process. ACS Sustainable Chemistry & Engineering, 8(41), 15630-15639.
Tao, Y., Shen, L., Feng, C., Qu, J., Ju, H., Yang, R., & Zhang, Y. (2021). Distribution of rare earth elements (REEs) and their roles in plants growth: A review. Environmental Pollution, 118540.
Teo, C. C., Tan, S. N., Yong, J. W. H., Hew, C. S., & Ong, E. S. (2010). Pressurized hot water extraction (PHWE). Journal of Chromatography A, 1217(16), 2484-2494.
Trinh, H. B., Lee, J. C., Suh, Y. J., & Lee, J. (2020). A review on the recycling processes of spent auto-catalysts: Towards the development of sustainable metallurgy. Waste Management, 114, 148-165.
Trinh, H. B., Lee, J. C., Srivastava, R. R., Kim, S., & Ilyas, S. (2017). Eco-threat minimization in HCl leaching of PGMs from spent automobile catalysts by formic acid prereduction. ACS Sustainable Chemistry & Engineering, 5(8), 7302-7309.
United States Geological Survey. (2022). Mineral commodity summaries 2022.
United States Geological Survey. (2021). Mineral commodity summaries 2021.
Vanýsek, P. (2014). CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. 95th edition.
Yakoumis, I., Panou, M., Moschovi, A. M., & Panias, D. (2021). Recovery of platinum group metals from spent automotive catalysts: A review. Cleaner Engineering and Technology, 3, 100112.
Zhang, J., Wen, C., Zhang, H., Duan, Y., & Ma, H. (2020). Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends in Food Science & Technology, 95, 183-195.

QR CODE