簡易檢索 / 詳目顯示

研究生: 李宜芝
Yi-Chih Lee
論文名稱: BaO-B2O3-SiO2玻璃添加ZnO對Ba-Ti-O微波介電陶瓷低溫製程微觀結構與介電特性之影響
The microstructure and dielectric properties of Ba-Ti-O by adding ZnO to BaO-B2O3-SiO2 glass system The microstructure and dielectric properties of Ba-Ti-O micowave ceramics by adding ZnO to BaO-B2O3-SiO2 glass system
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 郭東昊
Dong-Hau Kuo
朱立文
Li-Wen Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 90
中文關鍵詞: 微波介電陶瓷介電特性玻璃
外文關鍵詞: microwave ceramic, dielectric property, glass
相關次數: 點閱:193下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究B2O3-SiO2-BaO-ZnO玻璃與BaTi4O9微波介電陶瓷之低溫共燒行為,實驗中固定B2O3-SiO2-BaO含量,探討ZnO添加含量變化時,對整個材料系統之共燒行為產生的結果與對微觀結構及電氣特性之影響;實驗中,A,B,C,D四組玻璃配方均能降低燒結溫度,且經控制燒結條件後能有效抑制銅的擴散進而改善試片之變色問題,同時在這四組玻璃配方中找出可以維持基本品質因子(quality factor, Q)的高頻介電特性的目的之適當玻璃添加比例。
    從X-ray繞射之相結構分析搭配電性分析可以發現維持BaTi4O9主體相有助於促使介電特性中之Qf值達到理想數值,Cu電極與BaTi4O9主體之Ti元素所組成之銅鈦氧化物(Cu3Ti3O)二次相因為能夠作為銅電極及陶瓷胚體的中間層,故能對界面間提供漸進的轉換進而促使微波介電特性中之Qf值獲得提昇,且燒結過程中ZnO會與B2O3產生液相以幫助燒結,同時於試片中生成Zn(BO2)2二次相,進而導致介電常數降低 。
    當玻璃配方為A及B,並將BaTi4O9陶瓷主粉與此兩組玻璃混合,且添加比例均為4 wt%時,即B2O3 wt%實際添加量為8.256×10-3∼8.412×10-3 wt%,SiO2 wt%實際添加量為7.08×10-3∼7.216×10-3 wt%,BaOwt%實際添加量為1.5044×10-2∼1.5332×10-2 wt%,ZnO實際添加量為9.04×10-3∼9.62 ×10-3 wt% 之區塊內時,試片Qf值可提昇至5737.8∼5881.5,散逸因子亦可降低至0.00024∼0.000265,故可推論此兩組玻璃及其添加比例範圍能夠有效達到維持介電特性,故將此兩組玻璃在上述之配方範圍附近作微調整,以期能更進一步提昇高頻介電特性-Qf值;發現當B2O3wt%實際添加量為9.288×10-3∼1.15665×10-2 wt%,SiO2 wt%實際添加量為7.965×10-3∼9.922×10-3 wt%,BaOwt%實際添加量為7.965×10-3∼9.922×10-3 wt%,,ZnO實際添加量為1.08225×10-2∼1.243×10-2 wt%之區塊內時Qf值可提昇至6368(GHz)。


    In the article, we investigate the sintering behavior, microstructures and electrical properties of low-temperature firable BaO-B2O3-SiO2-ZnO glass-added BaTi4O9 microwave dielectric materials with Cu paste in a reducing atmosphere. We fixed the BaO-B2O3-SiO2 content and varying the ZnO contents for studying the effect of glass compositions on the sintering behavior, microstructures and dielectric properties of low-temperature friable samples. The experiment results show that all of the four glass recipes A,B,C,D can not only reduce effectively sintering temperatures, but also improve the discoloring question of samples by restraining the diffusion of Cu-electrode during sintering process. According to the forgoing results, it is necessary to modify further the proportion of glass additions for obtaining better microwave dielectric properties, such as quality factor (Qf), at microwave frequency regime.
    Base on the analysis results of X-ray diffractometry and electrical properties of the samples, it was found that the Qf value is high as the BaTi4O9 host phase has been maintained. Beside, the improved Qf value can be obtained due to the Cu3Ti3O phase, resulting from Cu reacts with Ti element of the BaTi4O9 ceramics, which existed and to be a interlayer between electrode and ceramics so that it can provide a gradual transformation zone to alleviate the structural transition and to promote the Qf value. Moreover, ZnO and B2O3 not only be a liquid phase promoter to give a assistance in sintering procedure but also form Zn(BO2)2 second phase to reduce dielectric constant.
    With the glass recipes A and B, whose content range are B2O3: 8.256×10-3∼8.412×10-3 wt%, SiO2: 7.08×10-3∼7.216×10-3 wt%, BaO: 1.5044×10-2∼1.5332×10-2 wt%, ZnO: 9.04×10-3∼9.62×10-3 wt%, the Qf value of the samples can be improved to 5737.8∼5881.5, and the DF value can be also decreased to 0.00024∼0.000265. According to the forgoing results, it can be expected to modify further the proportion of glass addition for achieving a higher Qf value. Subsequently, it is find that when the compositions of glass addition are B2O3: 9.288×10-3∼1.15665×10-2 wt%, SiO2: 7.965×10-3∼9.922×10-3 wt%, BaO: 7.965×10-3∼9.922×10-3 wt%, ZnO: 1.08225×10-2∼1.243×10-2 wt%, the Qf value of the samples can be improved markedly to 6368(GHz).

    目錄 摘要 I Abstract III 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1研究背景 1 1.2 研究目的 1 第二章 文獻回顧 3 2.1電子被動元件 3 2.2電容種類與規格 6 2.3低溫共燒陶瓷與其應用 9 2.4 微波介電陶瓷與其特性 11 2.5 玻璃助熔劑的添加 17 2.6 卑金屬製程 20 2.7 電極擴散之抑制配方 22 第三章 實驗步驟與分析手法 24 3.1 實驗程序 24 3.2 實驗儀器規格 26 3.3試片製備與規劃 27 3.4 基本性質與量測 30 3.4.1 密度量測 30 3.4.2品質因子(Quality Factor)與介電常數(dielectric constant)量測 31 3.5 微觀分析 33 3.5.1 X-Ray繞射分析 33 3.5.2 SEM微觀分析 33 第四章 實驗結果分析與討論 35 4.1 密度分析 35 4.1.1 Ba-Ti-O微波介電材料之密度分析 35 4.1.2 LTCC試片之密度分析 35 4.2 OM觀察 37 4.3 X-Ray繞射分析 38 4.3.1 Ba-Ti-O微波介電材料於大氣燒結之相結構分析 38 4.3.2 LTCC試片之相結構分析 39 4.4 微觀分析 43 4.4.1 SEM微結構觀察及成份分析 43 4.4.2 LTCC 介電材料之微結構分析 43 4.5 電性分析 48 4.5.1 玻璃助燒劑對電性之影響 48 4.6成份微調 53 4.6.1微調試片之製備與規劃 53 4.6.2 微調玻璃助燒劑對電性之影響 54 第五章 結論 84 第六章 文獻回顧 86

    第六章 文獻回顧
    1. Jong-Bong Cho, Kyung-HoonNahm, Sahn Paik, Jong-HooKim, Jong-Hee Lim,Effect of BaCu(B2O5) on the sintering temperature and microwave dielectric properties of BaO-Ln2O3-TiO2 ceramics. Materials Research Bulletin, 2006. 41(10): p. 1868-1874.
    2. Okawa, T. and Utaki, H., The development of a multilayer dielectric filter using low temperature fired microwave ceramics. Vol. 47. 1991: Sumitomo Search. 117.
    3. 吳朗, 電子陶瓷--介電陶瓷. 全欣資訊圖書 1994年.
    4. Yi-ChengTseng, Ko-HaoChung, Tzu-Chin Liou, Effect of dopants on synthesis of BaTi4O9 and Ba2Ti9O20 ceramics prepared by reaction-sintering process. Journal of the European Ceramic Society, 2007. 27(8-9): p. 3027-3032.
    5. Huan-fu Zhou, Hong Wang, Di Zhou, Li-Xia Pang, Xi Yao, Effect of ZnO and B2O3 on the sintering temperature and microwave dielectric properties of LiNb0.6Ti0.5O3 ceramics. Materials Chemistry and Physics, 2008. 109(2-3): p. 510-514.
    6. Di Pang, Li-Xia Yao, Xi Wang, Hong Zhou, Influence of sintering process on
    the microwave dielectric properties of Bi(V0.008Nb0.992)O4 ceramics.
    Materials Chemistry and Physics, 2009. 115(1): p.126-131.
    7. Weng, M.H., T.J. Liang, and C.L. Huang, Lowering of sintering temperature and microwave dielectric properties of BaTi4O9 ceramics prepared by the polymeric precursor method. Journal of the European Ceramic Society, 2002. 22(9-10): p. 1693-1698.
    8. Sea-FueYang, Thomas C. K.Chiang, Chuang-ChungTsai, Stanley H. Y.Wang,
    Effects of additives on the phase formation and microstructural evolution of
    Ba2Ti9O20 microwave ceramic. Ceramics International, 2003. 29(1): p. 77-81.
    9. 維基百科,自由的百科全書http://zh.wikipedia.org/wiki/%E9%93%9C.
    10. Byung-HaeHwang, Seong-JinKim, Hyung-SunJung, B.-H., S.-J. Hwang,
    and H.-S. Kim, Glass-ceramic for low temperature co-fired dielectric ceramic
    materials based on La2O3-B2O3-TiO2 glass with BNT ceramics. Journal of
    the European Ceramic Society, 2005. 25(13): p. 3187-3193.
    11. J.Houivet, D.El Fallah, J.Haussonne, J. M.Bernard, MgTiO3 for Cu base metal
    multilayer ceramic capacitors. Journal of the European Ceramic Society,2004.
    24(6): p. 1877-1881.
    12. Songping Wu,Preparation of ultra-fine copper powder and its lead-free conductive thick film. Materials Letters, 2007. 61(16): p. 3526-3530.
    13. Songping Wu, Preparation of ultra fine copper-nickel bimetallic powders for conductive thick film. Intermetallics, 2007. 15(10): p. 1316-1321.
    14. Lin, C. C.Wei, W. C. J.Su, C. Y.Hsueh, C. H., Oxidation of Ni electrode in
    BaTiO3 based multilayer ceramic capacitor (MLCC). Journal of Alloys and
    Compounds. In Press, Corrected Proof.
    15. Detlev F. K.Hennings, Dielectric materials for sintering in reducing
    atmospheres. Journal of the European Ceramic Society, 2001. 21(10-11): p.
    1637-1642.
    16. Hiromichi Takebe, Yoshikazu Nageno, and Kenji Morinaga, Compositional Dependence of Judd-Ofelt Parameters in Silicate, Borate, and Phosphate Glasses. Journal of the American Ceramic Society, 1995. 78(5): p. 1161-1168.
    17. Yoshirou Kuromitsu, Shoko Yoshikawa, Robert E. Newnham, Evolution of Interfacial Microstructure between Barium Titanate and Binary Glasses. Journal of the American Ceramic Society, 1994. 77(3): p. 852-856.
    18. Takahiro Takada, Shoko Yoshikawa, Sei-Joo Jang, Robert E. Newnham ,Effect of Glass Additions on BaO–TiO2–WO3 Microwave Ceramics. Journal of the American Ceramic Society, 1994. 77: p. 1909-1916.
    19. Cheng-Liang Weng, Min-Hung Lion, Ciou-Tizer Wu, Chen-Cher Huang, Low
    temperature sintering and microwave dielectric properties of Ba2Ti9O20 ceramics using glass additions. Materials Research Bulletin, 2000. 35(14-15): p. 2445-2456.
    20. Jenn-Ming Wu, Ming-Chu Chang, and Pei-Chih Yao, Reaction Sequence and Effects of Calcination and Sintering on Microwave Properties of (Ba,Sr)O-Sm2O3-TiO2 Ceramics. Journal of the American Ceramic Society, 1990. 73(6): p. 1599-1605.
    21. Nenasheva, E.A. and N.F. Kartenko, Low-sintering ceramic materials based on Bi2O3-ZnO-Nb2O5 compounds. Journal of the European Ceramic Society, 2006. 26(10-11): p. 1929-1932.
    22. Anna-KarinAlford, Neil McNeilAxelsson, Bismuth titanates candidates for high permittivity LTCC. Journal of the European Ceramic Society, 2006. 26(10-11): p. 1933-1936.
    23. S. Nishigaki, H. Kato, S. Yano, and R. Kamimura, , American Ceramic Society Bulletin, 1987. 66: p. 1405-1410.
    24. ShunhuaWang, GuoqingZhao, YushuangSu, HaoWu, BaO-TiO2 microwave
    ceramics. Journal of the European Ceramic Society, 2003. 23(14): p.
    2565-2568.
    25. Sung-Hun Kim, Dong-Wan Cho, Seo-Yong Hong, Kug Sun Yoon, Phase analysis and microwave dielectric properties of LTCC TiO2 with glass system. Journal of the European Ceramic Society, 2003. 23(14): p. 2549-2552.
    26. Chen, X.M., Y.H. Sun, and X.H. Zheng, High permittivity and low loss dielectric ceramics in the BaO-La2O3-TiO2-Ta2O5 system. Journal of the European Ceramic Society, 2003. 23(10): p. 1571-1575.
    27. Huang, Cheng-Liang Pan, Chung-Long Shium, Shen-Jiunn Huang, , Liquid phase sintering of MgTiO3-CaTiO3 microwave dielectric ceramics. Materials Chemistry and Physics, 2003. 78(1): p. 111-115.
    28. T. Nishikawa, Y. Ishikawa, J. Hattori, and K. Wakino, IEEE Transactions on Microwave Theory and Techniques. 1989. 37: p. 2074-2079.
    29. Djuniadi A. Sagala and Shinji Nambu, Microscopic Calculation of Dielectric Loss at Microwave Frequencies for Complex Perovskite Ba(Zn1/3Ta2/3)O3. Journal of the American Ceramic Society, 1992. 75(9): p. 2573-2575.
    30. H. M. O'BRYAN JR., J. THOMSON JR., J. K. PLOURDE,A New BaO-TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss. Journal of the American Ceramic Society, 1974. 57(10): p. 450-453.
    31. H. M. O'BRYAN JR., J. THOMSON JR., J. K. PLOURDE,A New BaO-TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss. Journal of the American Ceramic Society, 1974. 57(12): p. 522-526.
    32. S. G. Mhaisalkar, W. E. Lee, D. W. Readey,, Processing and Characterization of BaTi4O9. Journal of the American Ceramic Society, 1989. 72(11): p. 2154-2158.
    33. Subodh G. Mhaisalkar, Dennis W. Readey, Sheikh A. Akbar,, Microwave
    Dielectric Properties of Doped BaTi4O9. Journal of the American Ceramic Society, 1991. 74(8): p. 1894-1898.
    34. Ming-Zong Jhou,Jau-Ho Jean., Low-Fire Processing of Microwave BaTi4O9Dielectric with BaO-ZnO-B2O3 Glass. Journal of the American Ceramic Society, 2006. 89(3): p. 786-791.
    35. Takahiro Takada, Sea Fue Wang, Shoko Yoshikawa, Sei-Joo Jang, Robert E. Newnham,, Effects of Glass Additions on (Zr,Sn)TiO4 for Microwave Applications. Journal of the American Ceramic Society, 1994. 77(9): p. 2485-2488.
    36. Sea-Fue Yang, Thomas C. K.Wang, Yuh-Ruey Kuromitsu, Yoshirou Wang. ,
    Effect of glass composition on the densification and dielectric properties of
    BaTiO3 ceramics. Ceramics International, 2001. 27(2): p. 157-162.
    37. Fukuda, K., R. Kitoh, and I. Awai, Microwave characteristics of mixed phases of BaTi4O9-BaPr2Ti4O12 ceramics. Journal of Materials Science, 1995. 30(5): p. 1209-1216.

    38. Lee, Man Jong You, Beoung Doo Kang, Dae Seok Lee, Man Jong You, properties of Mn-doped BaTi4O9-ZnO-Ta2O5 ceramics. Journal of Materials Science: Materials in Electronics, 1995. 6(3): p. 165-172.
    39. Brow, Richard K.Tallant, David R., Structural design of sealing glasses. Journal of Non-Crystalline Solids, 1997. 222: p. 396-406.
    40. Morena, R., Phosphate glasses as alternatives to Pb-based sealing frits. Journal of Non-Crystalline Solids, 2000. 263-264: p. 382-387.
    41. ZhaiXi, Y. A. O.Xiaogang, ChengLiangying, ZhangChen, Haydn Jiwei, Direct-current field dependence of dielectric properties in B2O3-SiO2 glass doped Ba0.6Sr0.4TiO3 ceramics. Journal of Materials Science, 2002. 37(17): p. 3739-3745.
    42. P.V. Divya and V. Kumar, Crystallization Studies and Properties of (Ba,Sr)TiO3 in Borosilicate Glass. Journal of the American Ceramic Society, 2007. 90(2): p. 472-476.
    43. P.V. Divya, Vignesh.G. and V. Kumar, Crystallization studies and dielectric properties of (Ba0.7Sr0.3)TiO3 in bariumaluminosilicate glass. J. Phys. D-Appl. Phys.,, 2007. 40: p. 7804-7810.
    44. Tao Hu, Heli Jantunen, Anatoli Deleniv, Electric-Field-Controlled Permittivity Ferroelectric Composition for Microwave LTCC Modules. Journal of the American Ceramic Society, 2004. 87(4): p. 578-583.
    45. Hirohisa Masuda, R.K., Naotaka Sakamoto and Kenji Morinaga, Properties and Structure of Glasses in the System BaO-B2O3-ZnO. The Journal of the Japan Institute of Metals 1999. Vol.63 , No.3: p. pp.284-288.
    46. Lee, Ying-chiehLu, Wei-huaWang, Su-heiLin, Chai-wei, Effect of SiO2 addition on the dielectric properties and microstructure of BaTiO3-based ceramics in reducing sintering. International Journal of Minerals, Metallurgy and Materials, 2009. 16(1): p. 124-127.
    47. K.S. Hong, J.K.L., D.W. Kim,H.S. Jung,H.B. Hong,J.Y. Lee,S.J. Yoon, U. Patent, Editor. 2001.
    48. Chaouchi, A.d'Astorg, S.Marinel, S.Aliouat, M., ZnTiO3 ceramic sintered at low temperature with glass phase addition for LTCC applications. Materials Chemistry and Physics, 2007. 103(1): p. 106-111.
    49. Kim, Dong-WanLee, Duk-GyuHong, Kug Sun, Low-temperature firing and microwave dielectric properties of BaTi4O9 with Zn-B-O glass system. Materials Research Bulletin. 36(3-4): p. 585-595.
    50. Guo-HuaLiu, Xin-Yu Chen, Sintering, crystallization and properties of MgO-Al2O3-SiO2 system glass-ceramics containing ZnO. Journal of Alloys and Compounds, 2007. 431(1-2): p. 282-286.
    51. Jiu-Nun Lin, Tai-Bor Wu , Wetting Reaction between Lithium Fluoride and Barium Titanate. Journal of the American Ceramic Society, 1989. 72(9): p. 1709-1712.
    52. C.Deneuve, B.El Fallah, J.Haussonne, J. M.Vigreux, Effects of acceptor and donor additives on the properties of MgTiO3 ceramics sintered under reducing atmosphere. Journal of the European Ceramic Society, 2001. 21(10-11): p. 1681-1684.
    53. Hyeon-Pyo Lee, Sang-Kyun Kim, Sang-Woo Choi, Duck-Kyun Jeon, Effects of BaO-B2O3-SiO2 glass additive on densification and dielectric properties of BaTiO3 ceramics. Materials Chemistry and Physics, 2005. 94(2-3): p. 185-189.
    54. S.Wu , H.Q., and P.Li, Journal of University of Science and Technology Beijing: Mineral
    Metallurgy Materials (Eng Ed), 2006. 13: p. 250-255.
    55. W. Songping and M. Shuyuan, Materials Letters, 2006. 60: p. 2438-2442.
    56. 楊正杰1,張鼎張2,鄭晃忠3, 毫微米通訊. 7: p. 40-46.
    57. 吳姵禎, 低溫共燒Ba-Ti-O 微波介電陶瓷與銅電極
    於還原氣氛下之相穩定性之研究2008.
    58. Ming-Zong Jhou and Jau-Ho Jean, Low-Fire Processing of Microwave BaTi4O9 Dielectric with BaO-ZnO-B2O3 Glass. Journal of the American Ceramic Society, 2006. 89(3): p. 786-791.
    59. Shannon, R.D., Dielectric polarizabilities of ions in oxides and fluorides. Journal of Applied Physics, 1993. 73(1): p. 348-366.
    60. Girish P. Kelkar and Altaf H. Carim, Synthesis, Properties, and Ternary Phase Stability of M6X Compounds in the Ti9472Cu9472O System. Journal of the American Ceramic Society, 1993. 76(7): p. 1815-1820.

    QR CODE