簡易檢索 / 詳目顯示

研究生: 劉育儐
Yu-Bin Liu
論文名稱: 程序強化技術應用於電解系統先導性開發研究
Preliminary Study of Electrolysis System Development with Process Intensification Technology
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 蔡大翔
Dah-Shyang Tsai
劉懷勝
Hwai-Shen Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 192
中文關鍵詞: 程序強化技術電解系統
外文關鍵詞: Process Intensification Technology, Electrolysis System
相關次數: 點閱:157下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電化學系統內部會牽涉離子遷移行為而電荷會轉移至液、固相間產生化學反應。但是電化學反應過程所施加的能量常消耗在與電化學本身反應非直接相關的因素上,因此可望透過程序強化技術提升電化學系統性能、降低系統能耗,達到縮小反應設備所需體積、降低整體成本以及提升設備安全性。
    本實驗室首次開發能在離心力場下進行水分解反應的 E-Higee 電解系統,透過調整電解液濃度、液體體積流率、電解盤轉速甚至是電解電壓都被認為是可以增加電解效率的操作因素。
    以計時電壓法、計時安培法和交流阻抗法等電化學技術,觀察到 E-Higee 電解系統可以大幅度地降低靜態電解系統內部能耗,並從陰極電壓減少量、省能程度、電流效率、溶液電阻以及電荷傳遞電阻等電解效率參考指標的變化趨勢,凸顯出 E-Higee 電解系統其高電解效率及低系統電阻的優勢。
    本先導性開發研究目的在於藉由程序強化技術概念應用於新穎電解系統的建立,並以實驗數據驗證此 E-Higee 電解系統的可能性,提供電解反應器其它新選擇。


    Electrochemistry is concerned with the transfer of charge, by the movement of ions, in a liquid or solid phase through which electrochemical reaction of species can be achieved. But the process of electrochemical reaction always consumed lots of energy on indirect reactions. Improvements in performance of electrochemical technology are targeted at reduced energy consumption, or higher power output, increased reaction rates through process intensification technology which result in smaller reactors, lower cost and higher safety.
    Currently, we are developing a E-Higee system which is capable of conducting water electrolysis under a centrifugal field. The electrolyte concentration, electrolyte flow rate, rotational speed, and even controlled bias were taken into consideration as the operating variables to pursue better efficiency of electrolysis in the E-Higee system.
    According to the experimental results, we observed some interesting phenomena of reduced energy consumption with E-Higee system by controlled-potential, controlled-current and AC impedance methods. Data collected from cathode potential reduction, power saving, current efficiency and the change of resistance revealed noticeably higher efficiency of electrolysis and lower resistance in E-Higee system, compared to stationary system.
    The aim of this preliminary study is to investigate the energy saving of water electrolysis with process intensification technology, and built up a high efficiency of electrolysis equipment.

    中文摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 本論文欲提出之解決辦法 2 第二章 文獻回顧與探討 3 2.1 氫能源 3 2.2 常見的氫氣製備方式 3 2.2.1 石化燃料產氫 3 2.2.2 水分解產氫 5 2.3 電化學基礎理論 7 2.3.1 電化學基本原理 7 2.3.2 三電極電化學系統 7 2.3.3 電解水產氫 8 2.3.4 影響電解因素 10 2.3.5 極化與過電位 11 2.4 電化學反應現象 12 2.4.1 電子轉移控制與質傳控制的關係 13 2.4.2 質傳控制 16 2.5 氣泡現象 17 2.5.1 電極表面的佔留氣泡 19 2.5.2 分散於電解液中的氣泡 21 2.6 E-Higee 電解反應系統 24 2.6.1 E-Higee 電解反應系統之簡介 24 2.6.2 E-Higee 電解反應系統理論流體動力學 25 2.6.3 E-Higee 電解反應系統之實際特性回顧 28 2.7 噴砂與濺鍍技術 47 2.7.1 噴砂技術 47 2.7.2 濺鍍技術 47 第三章 實驗設備及方法 49 3.1 實驗裝置 49 3.1.1 基礎型電極電解測試反應器 49 3.1.2 E-Higee 電解反應系統 49 3.2 實驗流程與操作變數 53 3.3 實驗藥品 55 3.4 實驗儀器 55 3.4.1 E-Higee 電解反應系統 55 3.4.2 鉑膜鈦電極製備所需設備 56 3.4.3 材料分析與 E-Higee 系統電解效率量測設備 56 3.5 實驗步驟 57 3.5.1 鉑膜鈦電極製備 57 3.5.2 進行電解系統實驗作業流程 58 3.6 電化學量測項目基礎理論 59 3.6.1 循環伏安法(Cyclic voltammetry) 59 3.6.2 線性掃描伏安法(Linear sweep voltammetry) 59 3.6.3 計時電壓法(Chronopotentiometry) 60 3.6.4 計時安培法(Chronoamperometry) 60 3.6.5 交流阻抗法(AC impedance) 60 第四章 實驗結果與討論 63 4.1 鉑膜鈦電極物理與電化學性質鑑定 63 4.1.1 鉑膜鈦電極物理特性分析 63 4.1.2 鉑膜鈦電極電化學特性分析 68 4.2 系統背景實驗 71 4.2.1 親水性電解裝置表面改質(接觸角) 71 4.2.2 蠕動泵體積流率與脈衝現象 72 4.2.3 靜態電解系統(Stationary pool 系統) 73 4.3 E-Higee 電解系統電解效率探討 76 4.3.1 E-Higee 電解反應系統電解效率探討 82 4.3.2 E-Higee 電解反應系統內部電阻探討 104 4.3.3 E-Higee 電解反應系統中流量效應 126 4.3.4 E-Higee 電解反應系統中電解盤作動效應 144 第五章 結論 171 參考文獻 173

    [1] N. Armaroli, V. Balzani, The hydrogen issue, ChemSusChem 4 (2011) 21-36.
    [2] J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies, Catalysis Today 139 (2009) 244-260.
    [3] D.R. Palo, R.A. Dagle, J.D. Holladay, Methanol steam reforming for hydrogen production, Chem Rev 107 (2007) 3992-4021.
    [4] J.W. Han, J.S. Park, M.S. Choi, H. Lee, Uncoupling the size and support effects of Ni catalysts for dry reforming of methane, Applied Catalysis B: Environmental 203 (2017) 625-632.
    [5] X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chem Soc Rev 44 (2015) 5148-5180.
    [6] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem Soc Rev 38 (2009) 253-278.
    [7] M. Roeb, M. Neises, J.-P. Säck, P. Rietbrock, N. Monnerie, J. Dersch, M. Schmitz, C. Sattler, Operational strategy of a two-step thermochemical process for solar hydrogen production, International Journal of Hydrogen Energy 34 (2009) 4537-4545.
    [8] A.J. Bard, L.R. Faulkner, Electrochemical methods and applications, Wiley-Interscience, New York; London, (2000).
    [9] H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang, S. Jin, Porous two- dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting, Chemistry of Materials 27 (2015) 5702-5711.
    [10] N. Nagai, Existence of optimum space between electrodes on hydrogen production by water electrolysis, International Journal of Hydrogen Energy 28 (2003) 35-41.
    [11] A. Roy, S. Watson, D. Infield, Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers, International Journal of Hydrogen Energy 31 (2006) 1964-1979.
    [12] S.-D. Li, C.-C. Wang, C.-Y. Chen, Water electrolysis in the presence of an ultrasonic field, Electrochimica Acta 54 (2009) 3877-3883.
    [13] M.-Y. Lin, L.-W. Hourng, C.-W. Kuo, The effect of magnetic force on hydrogen production efficiency in water electrolysis, International Journal of Hydrogen Energy 37 (2012) 1311-1320.
    [14] H. Matsushima, T. Nohira, I. Mogi, Y. Ito, Effects of magnetic fields on iron electrodeposition, Surface and Coatings Technology 179 (2004) 245-251.
    [15] D. Fernández, Z. Diao, P. Dunne, J.M.D. Coey, Influence of magnetic field on hydrogen reduction and co-reduction in the Cu/CuSO4 system, Electrochimica Acta 55 (2010) 8664-8672.
    [16] T. Iida, H. Matsushima, Y. Fukunaka, Water electrolysis under a magnetic Field, Journal of The Electrochemical Society 154 (2007) E112.
    [17] R.L. LeRoy, Analysis of time-variation effects in water electrolyzers, Journal of The Electrochemical Society 126 (1979) 1674.
    [18] K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Progress in Energy and Combustion Science 36 (2010) 307-326.
    [19] L.J.J. Janssen, Effective solution resistivity in beds containing one monolayer or multilayers of uniform spherical glass beads, Journal of Applied Electrochemistry 30 (2000) 507-509.
    [20] D. Kiuchi, H. Matsushima, Y. Fukunaka, K. Kuribayashi, Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity, Journal of The Electrochemical Society 153 (2006) E138.
    [21] H. Matsushima, T. Nishida, Y. Konishi, Y. Fukunaka, Y. Ito, K. Kuribayashi, Water electrolysis under microgravity, Electrochimica Acta 48 (2003) 4119-4125.
    [22] K. Aldas, Application of a two-phase flow model for hydrogen evolution in an electrochemical cell, Applied Mathematics and Computation 154 (2004) 507-519.
    [23] R.J. Balzer, H. Vogt, Effect of electrolyte flow on the bubble coverage of vertical gas- evolving electrodes, Journal of The Electrochemical Society 150 (2003) E11.
    [24] C. Ramshaw, The opportunities for exploiting centrifugal fields, Heat Recovery Systems and CHP 13 (1993) 493-513.
    [25] K. Qian, Z.D. Chen, J.J.J. Chen, Bubble coverage and bubble resistance using cells with horizontal electrode, Journal of Applied Electrochemistry 28 (1998) 1141-1145.
    [26] H. Matsushima, T. Iida, Y. Fukunaka, Observation of bubble layer formed on hydrogen and oxygen gas-evolving electrode in a magnetic field, Journal of Solid State Electrochemistry 16 (2011) 617-623.
    [27] P. Boissonneau, P. Byrne, An experimental investigation of bubble-induced free convection in a small electrochemical cell, Journal of Applied Electrochemistry 30 (2000) 767-775.
    [28] M. Wang, Z. Wang, X. Gong, Z. Guo, The intensification technologies to water electrolysis for hydrogen production – A review, Renewable and Sustainable Energy Reviews 29 (2014) 573-588.
    [29] R. Dejonge, E. Barendrecht, L. Janssen, S. Vanstralen, Gas bubble behaviour and electrolyte resistance during water electrolysis, International Journal of Hydrogen Energy 7 (1982) 883-894.
    [30] R.E.D.L. Rue, C.W. Tobias, On the conductivity of dispersions, Journal of The Electrochemical Society 106 (1959) 827.
    [31] P. Mandin, A.A. Aissa, H. Roustan, J. Hamburger, G. Picard, Two-phase electrolysis process: From the bubble to the electrochemical cell properties, Chemical Engineering and Processing: Process Intensification 47 (2008) 1926-1932.
    [32] K. Aldas, N. Pehlivanoglu, M. Mat, Numerical and experimental investigation of two- phase flow in an electrochemical cell, International Journal of Hydrogen Energy 33 (2008) 3668-3675.
    [33]
    [34] K. Boodhoo, A. Harvey, Process intensification for green chemistry : engineering solutions for sustainable chemical processing, (2013).
    [35]
    [36]
    [37]
    [38]
    [39]
    [40]
    [41]
    [42]
    [43]
    [44]
    [45]
    [46]
    [47]
    [48]
    [49] O. Levenspiel, Tracer technology modeling the flow of fluids, Springer, New York, NY, (2014).
    [50]
    [51] X. Zhang, G.-y. Xiao, X.-c. Zhao, K. He, W.-h. Xu, Y.-p. Lu, Rapid early formation and crystal refinement of chemical conversion hopeite coatings induced by substrate sandblasting, New Journal of Chemistry 39 (2015) 7942-7947.
    [52] K. Seshan, Handbook of thin film deposition processes and techniques principles, methods, equipment and applications, Noyes/Andrew, Norwich, NY, (2002).
    [53] Y. Zhu, M. Yuan, L. Deng, R. Ming, A. Zhang, M. Yang, B. Chai, Z. Ren, High-efficiency electrochemical hydrogen evolution based on the intermetallic Pt2Si compound prepared by magnetron-sputtering, RSC Advances 7 (2017) 1553-1560.
    [54] C.W. Tsao, L. Hromada, J. Liu, P. Kumar, D.L. DeVoe, Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment, Lab Chip 7 (2007) 499-505.
    [55] H.E. Darling, Conductivity of sulfuric acid solutions, Journal of Chemical & Engineering Data 9 (1964) 421-426.
    [56] D. Zhang, K. Zeng, Evaluating the behavior of electrolytic gas bubbles and their effect on the cell voltage in alkaline water electrolysis, Industrial & Engineering Chemistry Research 51 (2012) 13825-13832.
    [57] M. Wang, Z. Wang, Z. Guo, Understanding of the intensified effect of super gravity on hydrogen evolution reaction, International Journal of Hydrogen Energy 34 (2009) 5311-5317.
    [58] H. Matsushima, D. Kiuchi, Y. Fukunaka, Measurement of dissolved hydrogen supersaturation during water electrolysis in a magnetic field, Electrochimica Acta 54 (2009) 5858-5862.
    [59] J. Eigeldinger, H. Vogt, The bubble coverage of gas-evolving electrodes in a flowing electrolyte, Electrochimica Acta 45 (2000) 4449-4456.

    無法下載圖示 全文公開日期 2023/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE