簡易檢索 / 詳目顯示

研究生: 林聖育
Sheng-Yu Lin
論文名稱: 不同類型多元醇對光熱固化聚氨酯熱熔膠黏劑的製備並應用於尼龍織物無縫貼合
The Preparation of Photo-Thermosetting Polyurethane Hot Melt Adhesive by Different Types of Polyhydric Alcohol and the Application on Seamless Bonding of Nylon Fabric
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 郭中豐
Chung-Feng Jeffrey Kuo
黃昌群
Chang-Chiun Huang
蔡翔秦
Hsiang-Chin TSAI
蘇德利
Te-Li Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 149
中文關鍵詞: 聚氨酯熱熔膠光熱固化本體聚合多元醇田口品質工程方法灰關聯分析法
外文關鍵詞: polyurethane hot melt adhesive, dual-curing, bulk polymerization, polycarbonate polyol, Taguchi quality engineering method, grey correlation analysis method
相關次數: 點閱:353下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在製備光熱固化聚氨酯熱熔膠過程中,同時利用田口品質工程法與灰關聯度分析法,探討三種類型多元醇、三個NCO:OH比率、與辛基癸基丙烯酸酯添加莫耳比對於機械強度的影響,尋求一組最優化的參數。因此本研究總共分為四部分,第一部分使用田口法,運用田口直交表進行有效的降低實驗次數以及時間成本,尋求單品質最佳化的參數設計。
    第二部份使用三種類型多元醇分別是酯類、醚類、聚碳酸酯類,提供不同的柔性與韌性特性,並搭配二異氰酸酯(MDI)提供的剛性鏈段性質,進行聚氨酯預聚體的聚合。聚氨酯熱熔膠反應體系中,使用特定量的二異氰酸酯先進行多元醇的封端,聚合出聚氨酯預聚體,接著使用丙烯酸羥乙酯終止聚合反應,最後使用辛基癸基丙烯酸酯鍵結更多C=O基團並使聚氨酯熱熔膠擁有光熱固化性能,並應用於尼龍織物的無縫貼合技術達成無溶劑、無揮發性氣體、可低溫貼合的製程,以解決傳統熱熔膠因高溫加工產生的黃化、翹曲、溢膠等問題,並探討三個田口品質特性對膠黏劑軟化溫度、剝離強度、剪切強度的影響。藉由傅立葉紅外線光譜儀(FTIR)分析官能基基團反應、超高效聚合物色譜儀(APC)檢測分子量以及分子量分佈、熱重損失(TGA)分析耐熱溫度、萬能拉力試驗機檢測剝離以及剪切強度。於FTIR的圖譜得知,在2268cm-1處屬於異氰酸酯的-NCO基團反應峰明顯消失;1730cm-1處的C=O反應峰隨著辛基癸基丙烯酸酯添加莫耳比越高,能量峰也隨之提升。APC結果得知,聚合物的分子量從10,000提升至30,000,驗證當丙烯酸酯封端完成後,聚氨酯預聚體可以與辛基癸基丙烯酸酯產生鍵結,達到光熱固化的功效。TGA的結果顯示,UV照光產生的交聯結構以及雙鍵結構的鍵結,可以有效的提升最高耐溫溫度,並且三種多元醇中,醚類多元醇擁有最高的熱裂解溫度349.89℃。
    第三部份是將光熱固化聚氨酯熱熔膠應用於尼龍織物間的貼合,進行UV照光以及熱壓後測試。結果顯示,當使用聚碳酸酯多元醇、NCO:OH為4:1以及辛基癸基丙烯酸酯添加15莫耳比時,剝離強度達到最高1.627 kg/cm;當使用聚酯多元醇、NCO:OH使用4:1以及辛基癸基丙烯酸酯添加5莫耳比時,剪切強度達到最高33.96 kg/cm2,兩個強度皆達到廠商要求之標準。
    第四部份是對光熱固化聚氨酯熱熔膠的聚合進行多品質最佳化參數優化的設計,首先使用田口品質工程方法尋求單品質最佳化的參數,接著使用灰關聯計算,獲取多品質最佳化的參數組合,並用於尼龍織物貼合後,其剝離強度與剪切強度分別可達到1.68 kg/cm以及34.94 kg/cm2,比未使用最佳化設計的強度分別提高3.26%及2.89%。


    In the course of preparing photo-thermosetting polyurethane hot melt adhesive, this study used Taguchi quality engineering and grey relational analysis to discuss the influence of three types of polyhydric alcohol, three NCO:OH ratios, and the molar ratio of addition of octyl decyl acrylate on mechanical strength, while seeking for a group of optimal parameters. Therefore, this study was divided into four parts. Part I used Taguchi orthogonal array to effectively reduce the number of experiments and time cost in search for the parameter design of single quality optimization.
    Part II used three types of polyhydric alcohol, which are esters, ethers, and polycarbonates, to provide different flexible and ductile properties. With the rigid chain segment properties provided by methylene diphenyl diisocyanate (MDI), the polyurethane performed polymer was polymerized. In the polyurethane hot melt adhesive reaction system, a specific amount of diisocyanate was used for the end capping of polyhydric alcohols. The polyurethane performed polymer was polymerized, and then the polymerization was terminated by using hydroxyethyl acrylate. Finally, more C=O groups were bonded by using octyl decyl acrylate, and the polyurethane hot melt adhesive was given the photo-thermosetting characteristic. Octyl decyl acrylate was used in the seamless bonding technique for nylon fabric to achieve a solvent-free and volatile gas free low-temperature bonding process, so as to solve the yellowing, warpage, and adhesive overflow issues of conventional hot melt adhesive resulting from high temperature processing. Moreover, this study discussed the influence of three Taguchi quality characteristics on the adhesive softening temperature, peel strength, and shear strength. The functional group reaction was analyzed by FTIR, and the peel strength and shear strength were tested by a universal tensile testing machine. According to the spectrum of FTIR, the -NCO group reaction peak of isocyanate at 2268 cm-1 obviously disappeared, and the C=O reaction peak at 1730 cm-1 increased with the molar ratio of addition of octyl decyl acrylate. According to the APC result, the molecular weight of polymer increased from 10,000 to 20,000-30,000, verifying that after the acrylate end capping was completed, the polyurethane performed polymer could bond with octyl decyl acrylate to achieve the photo-thermosetting effect. The result of TGA shows that the bonding of crosslinked structure and double bond structure resulting from UV irradiation could effectively increase the maximum temperature resistance. Furthermore, the ethers polyhydric alcohol had the highest pyrolysis temperature of 349.89℃ among the three types of polyhydric alcohols.
    Part III used the photo-thermosetting polyurethane hot melt adhesive for nylon fabric bonding, and the test was performed after UV irradiation and hot pressing. The result shows that when the polycarbonate polyhydric alcohol was used, the NCO:OH was 4:1, and the addition of octyl decyl acrylate was 15 molar ratios, the peel strength reached the maximum of 1.627 kg/cm. When the polyester polyol was used, the NCO:OH was 4:1, and the addition of octyl decyl acrylate was 5 molar ratios, the shear strength reached the maximum of 33.96 kg/cm2. These two strengths have reached the manufacturer's standards.
    Part IV performed the optimal design of multi-quality optimization parameters for the polymerization of photo-thermosetting polyurethane hot melt adhesive. First, the Taguchi quality engineering method was used to find the parameters of single quality optimization, and then the grey relation calculation was used to obtain the parameter combination of multi-quality optimization. When this combination was used in nylon fabric bonding, the peel strength and shear strength were 1.68 kg/cm and 34.94 kg/cm2, respectively, higher than that without the optimal design by 3.26% and 2.89%, respectively.

    摘要 I 致謝 VII 目錄 VIII 圖目錄 X 表目錄 XII 第1章 緒論 1 1.1 研究背景與發展趨勢 1 1.2 研究動機 4 1.3 文獻回顧 6 1.3.1 熱熔膠黏合劑的介紹 6 1.3.2 熱熔膠黏劑種類 8 1.3.3 聚氨酯熱熔膠的研究近況 12 1.4 研究目的 17 1.5 研究內容 19 1.6 研究創新 22 1.7 論文架構與研究流程 24 第2章 雙固化型聚氨酯之材料特性與合成原理 27 2.1 聚氨酯熱熔膠黏劑的組成 27 2.1.1 多元醇 27 2.1.2 異氰酸酯 29 2.1.3 擴鏈劑 30 2.1.4 聚氨酯熱熔膠合成反應式 30 2.2 聚氨酯熱熔膠與各式基材的黏著理論 34 2.2.1 無機材料之黏著力 34 2.2.2 物理吸附與機械投錨理論 35 2.2.3 纖維、木材的黏著作用力 37 2.2.4 橡膠與塑膠類之黏著作用力 38 2.3 實驗分析儀器與檢測方法 40 2.3.1 化學性質分析 40 2.3.2 物理性質分析 42 第3章 研究理論 44 3.1 田口方法品質工程 44 3.1.1 直交表實驗與參數設計 45 3.1.2 因子效應 49 3.1.3 品質損失函數 51 3.1.4 訊號雜訊比 54 3.1.5 主效果分析 56 3.1.6 變異數分析 58 3.1.7 信賴區間 63 3.2 灰關聯分析法 66 3.2.1 灰階關聯分析法概述 66 3.2.2 灰關聯分析法的計算流程 67 3.2.3 灰關聯分析法計算 68 3.3 最佳化品質分析流程 70 第4章 實驗方法規畫與流程 73 4.1 實驗規畫 73 4.2 實驗藥品與材料 76 4.2.1 軟性鏈段單體 77 4.2.2 苯基甲烷二異氰酸酯(MDI) 80 4.2.3 丙烯酸羥乙酯 (2-HEA) 81 4.2.4 辛基癸基丙烯酸酯(n-Octyl Acrylate,ODA) 82 4.2.5 無縫貼合織物-尼龍布料 83 4.3 實驗步驟 84 第5章 雙固化聚氨酯特性結果與討論 87 5.1 多元醇的除水時間 87 5.2 雙固化聚氨酯FTIR分析 90 5.3 光固化單體含量對熱熔膠分子量的影響 92 5.4 光固化單體含量對熱熔膠熱裂解溫度之影響 94 5.5 熱熔膠的力學性能分析 98 第6章 雙固化聚氨酯熱熔膠品質分析結果討論 100 6.1 雙固化聚氨酯熱熔膠單品質最佳化分析 100 6.1.1 剪切強度單品質最佳化分析 100 6.1.2 剝離強度單品質最佳化分析 105 6.2 多品質最佳化分析結果 109 6.3 研究結果與市售熱熔膠的比較 115 第7章 結論 117 參考 文獻 119

    [1]. Bayer O., Rinke H., Siefken W., Orthner L., and Schild H. (1937). IG Farben. Patent DRP, 728981.
    [2]. Engels H. W., Pirkl H. G., Albers R., Albach R. W., Krause J., Hoffmann A., and Dormish J. (2013). Polyurethane: vielseitige Materialien und nachhaltige Problemlöser für aktuelle Anforderungen. Angewandte Chemie, 125(36), 9596-9616.
    [3]. Martin D. J., Osman A. F., Andriani Y., and Edwards G. A. (2012). Thermoplastic polyurethane (TPU)-based polymer nanocomposites. In Advances in polymer nanocomposites, 321-350.
    [4]. Prisacariu C. (2011).Polyurethane elastomers: from morphology to mechanical aspects. Springer Science & Business Media.
    [5]. Krol P. (2007). Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in materials science, 52(6), 915-1015.
    [6]. Chattopadhyay D. K., and Raju K. V. S. N. (2007). Structural engineering of polyurethane coatings for high performance applications. Progress in polymer science, 32(3), 352-418.
    [7]. Akindoyo J. O., Beg M., Ghazali S., Islam M. R., Jeyaratnam N., and Yuvaraj A. R. (2016). Polyurethane types, synthesis and applications–a review. Rsc Advances, 6(115), 114453-114482.
    [8]. Heath R. (2017). Isocyanate-based polymers: polyurethanes, polyureas, polyisocyanurates, and their copolymers. In Brydson's Plastics Materials 799-835.
    [9]. Somarathna H. M. C. C., Raman S. N., Mohotti D., Mutalib A. A., and Badri K. H. (2018). The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Construction and Building Materials, 190, 995-1014.
    [10]. Frick A., and Rochman A. (2004). Characterization of TPU-elastomers by thermal analysis (DSC). Polymer testing, 23(4), 413-417.
    [11]. Wongsamut C., Suwanpreedee R., and Manuspiya H. (2020). Thermoplastic polyurethane-based polycarbonate diol hot melt adhesives: The effect of hard-soft segment ratio on adhesion properties. International Journal of Adhesion and Adhesives, 102, 102677.
    [12]. Costa V., Nohales A., Félix P., Guillem C., and Gómez C. M. (2013). Enhanced polyurethanes based on different polycarbonatediols. Journal of Elastomers Plastics, 45(3), 217-238.
    [13]. Crescentini T. M., May J. C., McLean J. A., and Hercules D. M. (2019). Mass spectrometry of polyurethanes. Polymer, 181, 121624.
    [14]. Das A., and Mahanwar P. (2020). A brief discussion on advances in polyurethane applications.Advanced Industrial and Engineering Polymer Research, 3(3), 93-101.
    [15]. Ionescu M. (2005). Chemistry and technology of polyols for polyurethanes. I Smithers Rapra Publishing.
    [16]. Moore M. G., Swift T. K., Sanchez E., and Rose-Glowacki H. (2014). The Economic Benefits of the US Polyurethanes Industry, 2013.
    [17]. Chew M. Y. L. (2004). Retention of movement capability of polyurethane sealants in the tropics.Construction and Building Materials, 18(6), 455-459.
    [18]. Haber Z. B., Mackie K. R., and Zhao L. (2012). Mechanical and environmental loading of concrete beams strengthened with epoxy and polyurethane matrix carbon fiber laminates. Construction and building materials, 26(1), 604-612.
    [19]. Strobech C. (1990). Polyurethane adhesives.Construction and Building Materials, 4(4), 214-217.
    [20]. Asthana K. K., Lakhani R., and Aggarwal L. K. (1996). Expanded polystyrene composite door shutters—an alternative to wooden door shutters. Construction and Building Materials, 10(6), 475-480.
    [21]. Viljanmaa M., Södergård A., and Törmälä P. (2002). Adhesion properties of lactic acid based hot melt adhesives and their storage stability in different packaging applications. International Journal of adhesion and adhesives, 22(6), 447-457.
    [22]. Jana P. (2011). Assembling technologies for functional garments— An overview.
    [23]. Budhe S., Banea M. D., De Barros S., and Da Silva L. F. M. (2017). An updated review of adhesively bonded joints in composite materials. International Journal of Adhesion and Adhesives, 72, 30-42.
    [24]. Akindoyo J. O., Beg M. D., Ghazali S., Islam, M. R., Jeyaratnam N., and Yuvaraj A. R. (2016). Polyurethane types, synthesis and applications–a review. Rsc Advances, 6(115), 114453-114482.
    [25]. Engels H. W., Pirkl H. G., Albers R., Albach R. W., Krause J., Hoffmann, A., ... and Dormish J. (2013). Polyurethane: vielseitige Materialien und nachhaltige Problemlöser für aktuelle Anforderungen. Angewandte Chemie, 125(36), 9596-9616.
    [26]. Asensio M., Costa V., Nohales A., Bianchi O., and Gómez C. M. (2019). Tunable structure and properties of segmented thermoplastic polyurethanes as a function of flexible segment. Polymers, 11(12), 1910.
    [27]. Somarathna H. M. C. C., Raman S. N., Mohotti D., Mutalib A. A., and Badri K. H. (2018). The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Construction and Building Materials, 190, 995-1014.
    [28]. Kuo C. F. J., Chen J. B., Lin P. H., and Yen H. T. (2019). Hot-melt pressure-sensitive adhesive for seamless bonding of nylon fabric part I: effect of a functional monomer. Textile Research Journal, 89(6), 926-935.
    [29]. Yang D., and Chen X. (2017). Multi-layer pattern creation for seamless front female body armor panel using angle-interlock woven fabrics. Textile Research Journal, 87(3), 381-386.
    [30]. Costa V., Nohales A., Félix P., Guillem C., Gutiérrez D., and Gómez C. M. (2015). Structure–property relationships of polycarbonate diol‐based polyurethanes as a function of soft segment content and molar mass.Journal of Applied Polymer Science, 132(12).
    [31]. Yilgör I., Yilgör E., and Wilkes G. L. (2015). Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer, 58, 1-36.
    [32]. Yılgör E., and Yılgör I. (2001). Hydrogen bonding: a critical parameter in designing silicone copolymers.Polymer, 42(19), 7953-7959.
    [33]. Yoo C. S., and Chun J. H. (1999). Application of Polyurethane Adhesives. Polymer Science and Technology, 10(5), 578-588.
    [34]. Zhang F., and Hu C. (2013). The research for SBS and SBR compound modified asphalts with polyphosphoric acid and sulfur.Construction and Building Materials, 43, 461-468.
    [35]. Petrie E. M. (2013). Adhesive bonding of textiles: principles, types of adhesive and methods of use. Joining textiles, 225-274.
    [36]. Pourali M., and Peterson A. M. (2022). A tale of two polyamides: Comparing the crystallization kinetics of a hot-melt adhesive and a PA 6/66 copolymer.Thermochimica Acta, 710, 179176.
    [37]. Zhang S. J., Chen X. X., Cui C. H., Ma L., Zhong Q. Y., Shen K. X., ... and Zhang Y. F. (2021). Strong, removable, and photoluminescent hyperbranched polyamide-amine hot melt adhesive. Chinese Journal of Polymer Science, 39(10), 1319-1327.
    [38]. Segura D. M., Nurse A. D., McCourt A., Phelps R., and Segura A. (2005). Chemistry of polyurethane adhesives and sealants. In Handbook of Adhesives and Sealants, 101-162.
    [39]. McCreath S., Boinard P., Boinard E., Gritter P., and Liggat J. J. (2018). High clarity poly (caprolactone diol)-based polyurethane adhesives for polycarbonate lamination: Effect of isocyanate and chain-extender.International Journal of Adhesion and Adhesives, 86, 84-97.
    [40]. Li M., Zheng Z., Liu S., Su Y., Wei W., and Wang X. (2011). Synthesis and properties of poly (acrylates-co-urethane) adhesives for low surface energy materials.International journal of adhesion and adhesives, 31(6), 565-570.
    [41]. Moghadam P. N., Yarmohamadi M., Hasanzadeh R., and Nuri S. (2016). Preparation of polyurethane wood adhesives by polyols formulated with polyester polyols based on castor oil. International Journal of Adhesion and Adhesives, 68, 273-282.
    [42]. Dahmane H. (1996). Development of environmentally friendly warm-melt adhesives for the packaging industry. International Journal of Adhesion and Adhesives, 16, 43-45.
    [43]. Chu H. H., Huang W. H., Chuang K. S., and Shen B. H. (2020). Adhesion and viscoelastic property of poly (ethylene-co-vinyl acetate) based hot melt adhesives-Effects of tackifier and wax. International Journal of Adhesion and Adhesives, 99, 102586.
    [44]. Paul C. W. (2003). Hot-melt adhesives. MRS Bulletin, 28, 440-444.
    [45]. Huang J., Li A., and Li K. (2021). Investigation of polyurethane-based pressure-sensitive adhesives with castor oil as a polyol. International Journal of Adhesion and Adhesives, 105, 102763.
    [46]. Stolt M., Viljanmaa M., Södergård A., and Törmälä P. (2004). Blends of poly (ε‐caprolactone‐b‐lactic acid) and poly (lactic acid) for hot‐melt applications. Journal of Applied Polymer Science, 91(1), 196-204.
    [47]. Gallu R., Méchin F., Gérard J. F., and Dalmas F. (2022). Influence of the chain extender of a segmented polyurethane on the properties of polyurethane-modified asphalt blends. Construction and Building Materials, 328, 127061.
    [48]. Zhang Z., Luo N., Wang Z., and Luo Y. (2015). Polyglycidyl nitrate (PGN)‐based energetic thermoplastic polyurethane elastomers with bonding functions. Journal of Applied Polymer Science, 132.
    [49]. Chen X., Zhong H., Jia L., Ling J., Tang R., Qiao J., and Zhang Z. (2001). Polyesteramides used for hot melt adhesives: Synthesis and effect of inherent viscosity on properties. Journal of Applied Polymer Science, 81(11), 2696-2701.
    [50]. Jaehnigen J. C., Nabarun R. O. Y., Poeselt E., Petrovic D., Gutmann P., and Kempfert D. (2020).U.S. Patent Application, 16, 632,230.
    [51]. Kim T. K., Kim B. K., Kim Y. S., Cho Y. L., Lee S. Y., Cho Y. B., and Jeong H. M. (2009). The properties of reactive hot melt polyurethane adhesives modified with novel thermoplastic polyurethanes. Journal of Applied Polymer Science, 114, 1169-1175.
    [52]. Li W., Bouzidi L., and Narine S. S. (2008). Current research and development status and prospect of hot-melt adhesives: A review. Industrial & Engineering Chemistry Research, 47(20), 7524-7532.
    [53]. Moghadam P. N., Yarmohamadi M., Hasanzadeh R., and Nuri S. (2016). Preparation of polyurethane wood adhesives by polyols formulated with polyester polyols based on castor oil. International Journal of Adhesion and Adhesives, 68, 273-282.
    [54]. Sun L., Zong Z., Xue W., and Zeng Z. (2020). Mechanism and kinetics of moisture-curing process of reactive hot melt polyurethane adhesive. Chemical Engineering Journal Advances, 4, 100051.
    [55]. Guo Y., Zhang R., Xiao Q., Guo H., Wang Z., Li X., and Zhu J. (2018). Asynchronous fracture of hierarchical microstructures in hard domain of thermoplastic polyurethane elastomer : Effect of chain extender. Polymer, 138, 242-254.
    [56]. Lei W., Fang C., Zhou X., Cheng Y., Yang R., and Liu D. (2017). Morphology and thermal properties of polyurethane elastomer based on representative structural chain extenders. Thermochimica Acta, 653, 116-125.
    [57]. Yilgor I., and Yilgor E. (2007). Structure‐morphology‐property behavior of segmented thermoplastic polyurethanes and polyureas prepared without chain extenders. Polymer Reviews, 47, 487-510.
    [58]. Wenk K. S., and Ehrlich A. (2012). Isocyanates.Dermatitis, 23(3), 130-131.
    [59]. Ulrich H. (2002). Polyurethanes. Encyclopedia of Polymer Science and Technology, 4.
    [60]. Tang Q., He J., Yang R., and Ai Q. (2013). Study of the synthesis and bonding properties of reactive hot‐melt polyurethane adhesive. Journal of Applied Polymer Science, 128, 2152-2161.
    [61]. Kulkarni P., Ojha U., Wei X., Gurung N., Seethamraju K., and Faust R. (2013). Thermal and mechanical properties of polyisobutylene‐based thermoplastic polyurethanes. Journal of Applied Polymer Science, 130, 891-897.
    [62]. Liu H., Zhang Z., Zhu Y., Sun J., Wang L., Huang T., and Chen L. (2022). Modification of asphalt using polyurethanes synthesized with different isocyanates. Construction and Building Materials, 327, 126959.
    [63]. Pan X., Zeng Z., Xue W., and Zhu W. (2017). Hot melt adhesive properties of PA/TPU blends compatibilized by EVA-g-MAH. Journal of Adhesion Science and Technology, 31, 943-957.
    [64]. Fuensanta M., and Martín-Martínez J. M. (2018). Thermoplastic polyurethane coatings made with mixtures of polyethers of different molecular weights with pressure sensitive adhesion property. Progress in Organic Coatings, 118, 148-156.
    [65]. McCreath S., Boinard P., Boinard E., Gritter P., and Liggat J. J. (2018). High clarity poly (caprolactone diol)-based polyurethane adhesives for polycarbonate lamination: Effect of isocyanate and chain-extender.International Journal of Adhesion and Adhesives, 86, 84-97.
    [66]. Gama N., Ferreira A., and Barros-Timmons A. (2019). Cure and performance of castor oil polyurethane adhesive. International Journal of Adhesion and Adhesives, 95, 102413.
    [67]. Gouveia J. R., Sousa J. R. R., Ribeiro A. O., Saraiva S. A., and dos Santos D. J. (2020). Effect of soft segment molecular weight and NCO: OH ratio on thermomechanical properties of lignin-based thermoplastic polyurethane adhesive. European Polymer Journal, 131, 109690.
    [68]. Vineeth S. K., and Gadhave R. V. (2020). Sustainable raw materials in hot melt adhesives: a review. Open Journal of Polymer Chemistry, 10(03), 49.
    [69]. Park C. H., Lee S. J., Lee T. H., and Kim H. J. (2016). Characterization of an acrylic pressure-sensitive adhesive blended with hydrophilic monomer exposed to hygrothermal aging: assigning cloud point resistance as an optically clear adhesive for a touch screen panel. Reactive and Functional Polymers, 100, 130-141.
    [70]. Ebnesajjad S. (2011). Characteristics of adhesive materials. In Handbook of Adhesives and Surface preparation, 137-183.
    [71]. Du H., Zhao Y., Li, Q., Wang J., Kang M., Wang X., and Xiang H. (2008). Synthesis and characterization of waterborne polyurethane adhesive from MDI and HDI. Journal of Applied Polymer Science, 110(3), 1396-1402.
    [72]. Ma L., Song L., Wang H., Fan L., and Liu B. (2018). Synthesis and characterization of poly (propylene carbonate) glycol-based waterborne polyurethane with a high solid content.Progress in Organic Coatings, 122, 38-44.
    [73]. Ma J., Cai K., Yang C., Li M., Pan X., Huang Y., and Shao J. (2022). Synthesis and properties of photocurable polyurethane acrylate for textile artificial leather. Progress in Organic Coatings, 171, 107017.
    [74]. Huang J., Sun J., Zhang R., Zou R., Liu X., Yang Z., and Yuan T. (2016). Improvement of biodegradability of UV-curable adhesives modified by a novel polyurethane acrylate. Progress in Organic Coatings, 95, 20-25.
    [75]. Orgilés C. E., Arán-A. F., Torró-P. A. M., and Orgilés B. C. (2016). Novel polyurethane reactive hot melt adhesives based on polycarbonate polyols derived from CO2 for the footwear industry.International Journal of Adhesion and Adhesives, 70, 218-224.
    [76]. Ren Y., Dong Y., Yang R., and Yao Y. (2020). Preparation and properties of ultraviolet/thermal dual-curable polyurethane acrylate. International Journal of Adhesion and Adhesives, 99, 102580.
    [77]. Bi Y., Li Z., Wang N., and Zhang L. (2016). Preparation and characterization of UV/thermal dual-curable polyurethane acrylate adhesive for inertial confinement fusion experiment. International Journal of Adhesion and Adhesives, 66, 9-14.
    [78]. Xu Y., Petrovic Z., Das S., and Wilkes G. L. (2008). Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments. Polymer, 49(19), 4248-4258.
    [79]. Phillips R. A., and Cooper S. L. (1994). Phase separation in crystallizable multiblock poly (ether-ester) copolymers with poly (tetramethylene isophthalate) hard segments.Polymer, 35(19), 4146-4155.
    [80]. Ebnesajjad S. (2011). Characteristics of adhesive materials. In Handbook of Adhesives and Surface Preparation, 137-183.
    [81]. Park Y. J., Joo H. S., Kim H. J., and Lee Y. K. (2006). Adhesion and rheological properties of EVA-based hot-melt adhesives.International journal of adhesion and adhesives, 26(8), 571-576.
    [82]. Park Y. J., and Kim H. J. (2003). Hot-melt adhesive properties of EVA/aromatic hydrocarbon resin blend. International Journal of Adhesion and Adhesives, 23(5), 383-392.
    [83]. Dutta J., and Naskar K. (2014). Investigation of morphology, mechanical, dynamic mechanical and thermal behaviour of blends based on ethylene vinyl acetate (EVA) and thermoplastic polyurethane (TPU). RSC advances, 4(105), 60831-60841.
    [84]. Park Y. J., Joo H. S., Do H. S., and Kim H. J. (2006). Viscoelastic and adhesion properties of EVA/tackifier/wax ternary blend systems as hot-melt adhesives. Journal of Adhesion Science and Technology, 20(14), 1561-1571.
    [85]. Takemoto M., Kajiyama M., Mizumachi H., Takemura A., and Ono H. (2002). Miscibility and adhesive properties of ethylene vinyl acetate copolymer (EVA)‐based hot‐melt adhesives. I. Adhesive tensile strength. Journal of Applied Polymer Science, 83(4), 719-725.
    [86]. Ozturk G. I., Pasquale A. J., and Long T. E. (2010). Melt synthesis and characterization of aliphatic low-Tg polyesters as pressure sensitive adhesives.The Journal of Adhesion, 86(4), 395-408.
    [87]. Ozturk G. I., Pasquale A. J., and Long T. E. (2010). Melt synthesis and characterization of aliphatic low-Tg polyesters as pressure sensitive adhesives.The Journal of Adhesion, 86(4), 395-408.
    [88]. Park C. H., Lee S. W., Park J. W., and Kim H. J. (2013). Preparation and characterization of dual curable adhesives containing epoxy and acrylate functionalities. Reactive and Functional Polymers, 73(4), 641-646.
    [89]. Studer K., Decker C., Beck E., Schwalm R., and Gruber N. (2005). Redox and photoinitiated crosslinking polymerization: I. Dual-cure isocyanate-acrylate system. Progress in Organic Coatings, 53(2), 126-133.
    [90]. Leventis N., Sotiriou L. C., and Bang A. (2018). Flexible to Rigid Nanoporous Polyurethane-Acrylate (PUAC) Type Materials for Structural and Thermal Insulation Applications. Scholars Mine, 162-168.
    [91]. Gao L., Zhou L., Fang S., and Wu C. (2013). New copoly (urethane‐methacrylate) s obtained by adjusting the content of the poly (1, 2‐propanediol ortho‐phthalate) : Transparent, thermal, and mechanical properties. Journal of Applied Polymer Science, 128(6), 3900-3905.
    [92]. Bi Y., Li, Z., Wang N., and Zhang L. (2016). Preparation and characterization of UV/thermal dual-curable polyurethane acrylate adhesive for inertial confinement fusion experiment.International Journal of Adhesion and Adhesives, 66, 9-14.
    [93]. Burchardt B. R., and Merz P. W. (2006). Elastic bonding and sealing in industry. In Handbook of Adhesives and Sealants, 2, 355.
    [94]. LEE L. H. (2000). Adhesive and Sealant Chemistry.Applied Polymer Science, 21, 273.
    [95]. Islam M. R., Beg M. D. H., and Jamari S. S. (2014). Development of vegetable‐oil‐based polymers. Journal of Applied Polymer Science, 131(18).
    [96]. Velayutham T. S., Abd M. W. H., and Gan S. N. (2012). Dielectric behaviour of polyurethane coatings derived from palm oil oleic acid-based polyols-A renewable resource. Journal of Oil Palm Research, 24, 1260-1266.
    [97]. Eaves D. (Ed.). (2004).Handbook of polymer foams. I Smithers Rapra Publishing.
    [98]. Oertel G. (1986). Polyurethane handbook. Reinf Plast, 30(2), 51.
    [99]. Djonlagic J., and Nikolic M. S. (2011). Biodegradable polyesters: Synthesis and physical properties.Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications; Sharma, SK, Mudhoop, A., Eds, 149-196.
    [100]. Ziegler W., Guttmann P., Kopeinig S., Dietrich M., Amirosanloo S., Riess G., and Kern W. (2018). Influence of different polyol segments on the crystallisation behavior of polyurethane elastomers measured with DSC and DMA experiments. Polymer Testing, 71, 18-26.
    [101]. Petrović Z. S., and Ferguson J. (1991). Polyurethane elastomers. Progress in Polymer Science, 16(5), 695-836.
    [102]. Sultan M., Masood R., Bibi I., Sajid I., Islam A., Atta S., ... and Bhatti H. N. (2019). Impact of soft segment size on physicochemical and antimicrobial properties of waterborne polyurethane dispersions for textile applications. Progress in Organic Coatings, 133, 174-179.
    [103]. Gogoi R., Alam M. S., and Khandal R. K. (2014). Effect of increasing NCO/OH molar ratio on the physicomechanical and thermal properties of isocyanate terminated polyurethane prepolymer. International Journal of Basic and Applied Sciences, 3(2), 118.
    [104]. Somani K. P., Kansara S. S., Patel N. K., and Rakshit A. K. (2003). Castor oil based polyurethane adhesives for wood-to-wood bonding. International Journal of Adhesion and Adhesives, 23(4), 269-275.
    [105]. Asensio M., Costa V., Nohales A., Bianchi O., and Gómez C. M. (2019). Tunable structure and properties of segmented thermoplastic polyurethanes as a function of flexible segment. Polymers, 11(12), 1910.
    [106]. Špírková M., Poręba R., Pavličević J., Kobera L., Baldrian J., and Pekárek M. (2012). Aliphatic polycarbonate‐based polyurethane elastomers and nanocomposites. I. The influence of hard‐segment content and macrodiol‐constitution on bottom‐up self‐assembly. Journal of Applied Polymer Science, 126(3), 1016-1030.
    [107]. Pavličević J., Špírková M., Jovičić M., Bera O., Poręba R., and Budinski S. J. (2013). The structure and thermal properties of novel polyurethane/organoclay nanocomposites obtained by pre-polymerization. Composites Part B: Engineering, 45(1), 232-238.
    [108]. Kojio K., Furukawa M., Motokucho S., Shimada M., and Sakai M. (2009). Structure− mechanical property relationships for poly (carbonate urethane) elastomers with novel soft segments. Macromolecules, 42(21), 8322-8327.
    [109]. Pavličević J., Špírková M., Sinadinović F. S., Budinski S. J., Govedarica O., and Janković M. (2013). The influence of organoclays on the morphology, phase separation and thermal properties of polycarbonate-based polyurethane hybrid materials. Macedonian Journal of Chemistry and Chemical Engineering, 32(1), 151-161.
    [110]. Eceiza A., Larranaga M., Dela C. K., Kortaberria G., Marieta C., Corcuera M. A., and Mondragon I. (2008). Structure–property relationships of thermoplastic polyurethane elastomers based on polycarbonate diols. Journal of Applied Polymer Science, 108(5), 3092-3103.
    [111]. Kultys A., Rogulska M., and Głuchowska H. (2011). The effect of soft‐segment structure on the properties of novel thermoplastic polyurethane elastomers based on an unconventional chain extender. Polymer International, 60(4), 652-659.
    [112]. Kultys A., Rogulska M., Pikus S., and Skrzypiec K. (2009). The synthesis and characterization of new thermoplastic poly (carbonate-urethane) elastomers derived from HDI and aliphatic–aromatic chain extenders. European Polymer Journal, 45(9), 2629-2643.
    [113]. Špírková M., Pavličević J., Strachota A., Poreba R., Bera O., Kaprálková L., and Budinski S. J. (2011). Novel polycarbonate-based polyurethane elastomers: Composition–property relationship. European Polymer Journal, 47(5), 959-972.
    [114]. Cakić S. M., Špírková M., Ristić I. S., B S. J. K., Milena M., and Poręba R. (2013). The waterborne polyurethane dispersions based on polycarbonate diol: effect of ionic content. Materials Chemistry and Physics, 138(1), 277-285.
    [115]. Engels H. W., Pirkl H. G., Albers R., Albach R. W., Krause J., Hoffmann A., and Dormish J. (2013). Polyurethane: vielseitige Materialien und nachhaltige Problemlöser für aktuelle Anforderungen. Angewandte Chemie, 125(36), 9596-9616.
    [116]. Howard G. T. (2012). Polyurethane biodegradation. In Microbial Degradation of Xenobiotics, 371-394.

    無法下載圖示 全文公開日期 2024/09/27 (校內網路)
    全文公開日期 2024/09/27 (校外網路)
    全文公開日期 2024/09/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE