簡易檢索 / 詳目顯示

研究生: 陳建富
Chien-Fu Chen
論文名稱: 基於智能聯網平台於光譜晶片之光譜影像錄製分析與研究
Research on Spectral Image Recording and Analysis of Spectral Chip Based on Intelligent Network Platform
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 李敏凡
Min-Fan Lee
沈志霖
Ji-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 120
中文關鍵詞: 影像對焦影像辨識中央處理器高效能運算
外文關鍵詞: Image Focusing, Image Recognition, Central Processing Unit, High Performance Computing
相關次數: 點閱:175下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因目前使用的光譜儀,無法將光譜影像進行即時影像成像、分析與影像對焦,所以光譜設備製造時,須經其他設備將影像感測器對焦及光譜校正,然後紀錄參數,因此光譜儀進行設備安裝與成像測試等步驟時,需要確認光譜成像的正確性,以及量測誤差範圍合理性,有鑒於這樣的繁複手續,容易造成人員組裝誤差,和校正參數無法確認等問題,因此有必要研究和解決這個問題。
    因近年來影像辨識技術與智能化平台處理器,都有效率極佳的開發平台,並且已經有許多產品應用,因此,本研究希望可提供出一個智能化應用平台,對於光譜影像對焦與量測結果,可以提供即時影像錄影,並且數據運算可以再光譜儀系統上進行,進一步調整實驗誤差與光譜儀校正參數,經由重複量測及校正回歸,以及各種關鍵的生產製程步驟進行簡化,最後可以準確地測量出待檢測物品之光譜特性。
    光譜儀整合高效能處理平台,除了可以縮短目前待檢測物品量測定位時,造成儀器校正歸零的時間浪費,並且解決馬達移動時,移動誤差所造成的量測誤差。本研究希望可以藉由強化中央處理器,並改善影像感測器等相關技術,進一步改善目前光譜儀量測待檢測物品的過程,從耗時 4 分鐘的狀況,優化其耗時縮短至 20 秒內,並且運算分析可以由光譜儀進行高速運算及自我校正。


    Since the currently used spectrometers cannot perform real-time image imaging,analysis, and image focusing of spectral images, when manufacturing spectroscopic devices,the image sensor must be focused and spectrally calibrated by other equipment, and then the parameters are recorded. Therefore, the spectrometer needs to confirm the correctness of the spectral imaging and the rationality of the measurement error range when performing steps such as equipment installation and imaging testing. In view of such a complex procedure, it is easy to cause problems such as personnel assembly errors and inability to confirm calibration parameters. Therefore, it is necessary to study and solve this problem.
    At present, both imaging technology and intelligent processor are mature.Therefore, this study hopes to provide an intelligent application platform that can provide real-time image recording for spectral image focusing and measurement results, and can perform data calculations and import machine learning calculations to further measure experimental errors and key production processes. Each spectrometer can accurately measure the spectral properties of the object under test.
    The spectrometer integrates an efficient processing platform, which can not only shorten the calibration and zero adjustment time of the instrument when measuring the position of the measured object, but also solve the measurement error caused by the motion error when the motor is moving. This research hopes to further improve the measurement capabilities of current spectrometers on the measured object by using high-speed computing and improving image sensors and other related technologies. It takes 4 minutes to optimize to within 20 seconds, and can be calculated and analyzed by a spectrometer. High-performance computing and self-calibration.

    致謝. . . . . . . . . . . . . . . . . . . . . . . . . .I 摘要. . . . . . . . . . . . . . . . . . . . . . . . . .II ABSTRACT . . . . . . . . . . . . . . . . . . . . . . .III 目錄. . . . . . . . . . . . . . . . . . . . . . . . . .IV 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . .VII 表目錄. . . . . . . . . . . . . . . . . . . . . . . . .XI 縮寫說明列表. . . . . . . . . . . . . . . . . . . . . .XII 第一章緒論. . . . . . . . . . . . . . . . . . . . . . . 1 1.1 前言· · · · · · · · · · · · · · · · · · · · · · · · 1 1.2 文獻探討· · · · · · · · · · · · · · · · · · · · · · 2 1.3 研究動機· · · · · · · · · · · · · · · · · · · · · · 3 1.4 論文架構· · · · · · · · · · · · · · · · · · · · · · 4 第二章系統規劃與架構分析. . . . . . . . . . . . . . . . . 5 2.1 系統規格· · · · · · · · · · · · · · · · · · · · · · 5 2.2 系統規劃· · · · · · · · · · · · · · · · · · · · · 6 2.2.1 主核心模組· · · · · · · · · · · · · · · · · · · · 7 2.2.2 影像模組· · · · · · · · · · · · · · · · · · · · · 9 2.2.3 通訊介面模組· · · · · · · · · · · · · · · · · · · 10 2.3 系統硬體設計流程· · · · · · · · · · · · · · · · · · 12 2.4 系統設計及驗證流程· · · · · · · · · · · · · · · · · 13 2.5 系統設計前總結· · · · · · · · · · · · · · · · · · · 15 第三章系統設計方法. . . . . . . . . . . . . . . . . . . 16 3.1 光譜影像模組設計· · · · · · · · · · · · · · · · · · 16 3.1.1 電路設計· · · · · · · · · · · · · · · · · · · · 17 3.1.2 電路佈局· · · · · · · · · · · · · · · · · · · · 19 3.1.3 設計修正· · · · · · · · · · · · · · · · · · · · 21 3.1.4 影像模組成品狀況· · · · · · · · · · · · · · · · · 22 3.2 主核心模組設計· · · · · · · · · · · · · · · · · · 24 3.2.1 電路設計· · · · · · · · · · · · · · · · · · · · 24 3.2.2 電路佈局· · · · · · · · · · · · · · · · · · · · 26 3.2.3 設計檢討· · · · · · · · · · · · · · · · · · · · 34 3.2.4 主核心模組成品狀況· · · · · · · · · · · · · · · · 35 3.3 通訊介面模組設計· · · · · · · · · · · · · · · · · · 36 3.3.1 電路設計· · · · · · · · · · · · · · · · · · · · 36 3.3.2 電路佈局· · · · · · · · · · · · · · · · · · · · 40 3.3.3 電源電路設計規劃與修正· · · · · · · · · · · · · · 44 3.3.4 通訊介面模組成品狀況· · · · · · · · · · · · · · · 45 3.4 射頻電路與天線匹配設計· · · · · · · · · · · · · · · 47 3.4.1 WIFI/BT(2.4GHz)匹配電路· · · · · · · · · · · · 48 3.4.2 WIFI(5GHz) 匹配電路· · · · · · · · · · · · · · · 51 3.5 光譜儀系統整合· · · · · · · · · · · · · · · · · · ·53 3.6 光譜儀原理與波長校正方法· · · · · · · · · · · · · 56 3.6.1 光譜儀原理· · · · · · · · · · · · · · · · · · · 56 3.6.2 波長校正的目的· · · · · · · · · · · · · · · · · 59 3.6.3 波長校正方法· · · · · · · · · · · · · · · · · · 61 3.6.4 誤差分析· · · · · · · · · · · · · · · · · · · ·65 第四章結果與討論. . . . . . . . . . . . . . . . . . · 66 4.1 光譜影像模組波長校正· · · · · · · · · · · · · · · 66 4.2 波長校正誤差分析· · · · · · · · · · · · · · · · · 71 4.3 光譜影像錄製與RGB 影像分析· · · · · · · · · · · · 77 4.4 RGB 光譜反射率· · · · · · · · · · · · · · · · · ·90 4.5 動態錄影與靜態拍照反射率分析· · · · · · · · · · · 95 第五章結論與未來展望. . . . . . . . . . . . . . . · ·100 5.1 結論· · · · · · · · · · · · · · · · · · · · · ·100 5.2 未來展望· · · · · · · · · · · · · · · · · · · ·101 參考文獻. . . . . . . . . . . . . . . . . . . . . ·102

    [1] T. Wang, F. Shen, et al., “Smartphone imaging spectrometer for egg/meat freshness
    monitoring,” Analytical Methods, pp.508 – 517, 2022.
    [2] E. Pitula, M. Koba, et al., “Which smartphone for a smartphone-based spectrometer?” Optics and Laser Technology, pp. 1 – 8, 2021.
    [3] P. C. Biswas, S. Rani, et al., “Simultaneous multi-analyte sensing using a 2d quad-beam diffraction smartphone imaging spectrometer,” Sensors and Actuators B: Chemical, pp.1 – 10, 2022.
    [4] C. Chen, H. Ding, et al., “Smartphone based spectrometry platform for mobile health:From spectrometer to multispectral imager,” Proceedings of SPIE - The International Society for Optical Engineering, pp. 1 – 3, 2019.
    [5] H. H. Lin, J. T. Lin, et al., “Design and application of a micro-concave-grating demultiplexer,” Instruments Today, pp. 58–70, 2002.
    [6] S. C. Lo, E. H. Lin, et al., “A concave blazed-grating-based smartphone spectrometer for multichannel sensing,” IEEE Sensors Journal, pp. 11 134 – 11 141, 2019.
    [7] Y. C. Lu, Z. Y. Chen, et al., “Low power multi-lane mipi csi-2 receiver design and hardware implementations,” Proceedings of the International Symposium on Consumer
    Electronics, ISCE, pp. 199 – 200, 2013.
    [8] K. Lim, G. S. Kim, et al., “A multi-lane mipi csi receiver for mobile camera applications,” IEEE Transactions on Consumer Electronics, pp. 1185 – 1190, 2010.
    [9] G. Antonini, A. C. Scogna, et al., “S-parameters characterization of through, blind, and buried via holes,” IEEE Transactions on Mobile Computing, pp. 174 – 184, 2003.
    [10] Y. Liu and C. He, “A design of mipi dsi interface for lcd display driver,” Journal of Physics: Conference Series, pp. 1 – 6, 2022.
    [11] A. Vardapetyan and C. J. Ong, “Via design optimization for high speed differential interconnects on circuit boards,” EPEPS 2020 - IEEE 29th Conference on Electrical Performance of Electronic Packaging and Systems, pp. 1 – 3, 2020.
    [12] A. K. Pandey, A. Jangale, et al., “Signal integrity and compliance test of dsi and csi2 serial interface over mipi d-phy,” SPI 2020 - 24th IEEE Workshop On Signal and Power Integrity, Proceedings, pp. 1 – 4, 2020.
    [13] J. Wang, C. Xu, et al., “Differential via designs for crosstalk reduction in high-speed pcbs,” 2020 IEEE International Symposium on Electromagnetic Compatibility and Signal/Power Integrity, EMCSI 2020, pp. 145 – 149, 2020.
    [14] R. J. Sanchez Mesa, D. M. Cortes Hernandez, et al., “A novel high-performance length matching element for high-speed interconnect differential channels,” 2018 IEEE MTT-S Latin America Microwave Conference, LAMC 2018 - Proceedings, pp. 1 – 3, 2018.
    [15] K. Y. Dong, X. C. Li, et al., “Formula derivation of characteristic impedance of substrate integrated coaxial line,” 2019 International Conference on Microwave and Millimeter Wave Technology, ICMMT 2019 - Proceedings, pp. 1 – 3, 2019.
    [16] W. Jiang, K. Cai, et al., “Practical high speed pcb stackup tool - generation and validation,” Proceedings - Electronic Components and Technology Conference, pp. 2288 – 2294, 2018.
    [17] W. H. Chiu, “Development of wavelength calibration procedure for a self-developed chip-spectrometer and its application in urine protein test strip measurement,” Master Thesis of National Taiwan University of Science and Technology, pp. 10–24, 2018.
    [18] Y. Bao, X. Liu, et al., “High-performance optical refractive index sensor based on concave resonant grating,” Zhongguo Jiguang/Chinese Journal of Lasers, pp. 1–6, 2021.
    [19] B. Z. Du, J. P. Zhu, et al., “Effects of bragg periods per grating period on performance of bragg concave diffraction grating,” Wuli Xuebao/Acta Physica Sinica, pp. 2–7, 2017.
    [20] B. Yu, W. Jin, et al., “Wavelength drift correction method based on energy redistribution,” Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities, pp. 1600 – 1605, 2019.
    [21] S. C. Kefauver, A. G. Romero, et al., “Open-source software for crop physiological assessments using high resolution rgb images,” International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4359 – 4362, 2020.

    無法下載圖示 全文公開日期 2024/07/25 (校內網路)
    全文公開日期 2024/07/25 (校外網路)
    全文公開日期 2024/07/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE