簡易檢索 / 詳目顯示

研究生: Nguyen Duy Khiem
Khiem Nguyen-Duy
論文名稱: 矩陣轉換器驅動系統的可靠度改善
Reliability Improvement of Matrix Converter Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 陳德發
none
劉益華
Yi-Hua Liu
廖聰明
none
許源浴
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 94
中文關鍵詞: 可靠度改善策略矩陣轉換器永磁同部電動機容錯
外文關鍵詞: reliability improving strategy
相關次數: 點閱:182下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

矩陣轉換器系統正逐漸取代傳統的兩級式交流/直流/交流轉換器。由於商品化,矩陣轉換器波寬調制技術和換向的議題,已經被完整的探討且已臻成熟。這是因為直接式交流/交流轉換器具有許多關鍵性的優點,包括內含四象限的操作,沒有大體積的直流鏈電解電容,高輸入功因,及改良的功率密度。然而,系統的可靠度仍然維持著開放的議題,而且尚未獲得應有的重視。其中,最普遍的可靠度問題是雙向元件在操作時,呈現開路的故障。
本文探討以矩陣轉換器驅動一部可調速的永磁同步電動機,研究單一功率元件開路故障,以及兩個功率元件開路故障的問題。首先,一種新型的偵錯方法被提出,探討當單一開關開路,且僅使用電動機的電流作為偵錯信號。其次,新型的容錯下的切換策略被討論,此策略使用兩級的整流/變頻器虛擬架構。在此架構下傳統的變頻器電流調制方法仍可適用,但整流器則需適度的修正來克服故障。本文所提方法,不需外加硬體元件或電路,實測結果說明本文所提方法能維持電動機的漣波轉速在2%內,比未改善前降低了五分之一。本文所提方法為經濟且有效,可用於改善矩陣轉換器故障問題。


The matrix converter system is becoming a very promising candidate to replace the conventional two-stage ac/dc/ac converter. Since its commercialization, modulation techniques and commutation issues for the matrix converter have been thoroughly investigated and have reached their maturity. This is because this direct ac/ac converter possesses several key advantages such as: inherent four-quadrant operation, nonexistence of bulky dc link electrolytic capacitors, high-quality input power factor, and improved power density. However, system reliability remains an open issue and has not received much attention. The most common reliability problem is that a bi-directional switch has an open-switch fault during operation.
In this thesis, a matrix converter driving an adjustable speed permanent magnet synchronous motor is examined under both single open-switch fault and two open-switch faults. First, a new fault detection method is proposed for the situation of single open-switch fault using only the motor currents. Second, novel fault-tolerant switching strategies are presented. The proposed methods utilize the concept of modeling the matrix converter as a two-stage rectifier/inverter. With the proposed methods, existing modulation techniques for the inverter stage can be reused, whereas the rectifier stage is modified by control to counteract the fault. The principal advantage is that the proposed techniques require no additional hardware devices or circuit modifications to the matrix converter. Experimental results show that the proposed method can maintain the motor speed with a maximum ripple of 2% - a five-fold improvement over the uncompensated system. The proposed method, therefore, offers a very economical and effective solution for the matrix converter fault tolerance problem.

ABSTRACTiii DEDICATIONv ACKNOWLEDGEMENTSvi NOMENCLATUREvii TABLE OF CONTENTSviii LIST OF FIGURESxi LIST OF TABLESxiv I.INTRODUCTION1 1.1Fault Detection Methods2 1.2Methods for Fault Tolerant Operation3 1.3Open Challenges4 1.4Scope of the Research 5 1.5Thesis Outline 5 II.MATRIX CONVERTER DRIVE SYSTEMS7 2.1Introduction7 2.2Bidirectional Switch Configurations8 2.3Matrix Converter Operation Principle10 2.4Modulation Strategy 14 2.4.1 Modulation technique for the rectifier stage16 2.4.2 Modulation technique for the inverter stage19 2.5Commutation Method 22 2.6Clamp Circuit Design 23 2.7Mathematical Model of a PMSM 24 2.7.1 Mathematical Model in the abc stationary reference frame25 2.7.2 Mathematical Model in the Rotor Reference Frame26 III.A NOVEL ONLINE FAULT DETECTION METHOD FOR MATRIX CONVERTER DRIVE SYSTEMS28 3.1Introduction28 3.2The Proposed Drive System28 Page 3.3Proposed Fault Detection Method30 3.3.1 Effect of open-switch fault on converter behavior30 3.3.2 First stage of fault detection33 3.3.3 Second stage of fault detection35 IV.FAULT-TOLERANT MODULATION STRATEGY38 4.1Introduction38 4.2Fault Tolerant Switching Strategy for One Open-Switch Fault38 4.3Fault Tolerant Switching Strategy for Two Open-Switch Faults44 4.3.1 Case 1: two faulty open-switches lie on the same output leg45 4.3.2 Case 2: two faulty open-switches lie on the same input leg46 4.3.3 Case 3: two fault open-switches lie on different input and output leg49 V.EXPERIMENTAL RESULTS53 5.1Introduction53 5.2Hardware Setup53 5.3Experimental Results55 5.3.1 Fault detection and fault-tolerant switching with one open-switch fault55 5.3.1.1 Motor currents, torque, and speed error55 5.3.1.2 Current harmonics57 5.3.1.3 Load disturbance rejection, step response, and trajectory tracking57 5.3.2 Fault-tolerant switching with double open-switch faults58 5.3.3 Normal operation60 VI.DISCUSSION82 6.1Introduction82 6.2Discussion82 6.2.1 Merits and limitation of the proposed methods82 6.2.2 An insight into the effect of the motor back-emf to system per- formance84 VII.CONCLUDING REMARKS AND FUTURE WORKS87 7.1Conclusion87 7.2Suggestions for Future Works87 Page REFERENCES89 VITA94

[1] A. Alesina and M.G.B. Venturini, "Analysis and design of optimum-amplitude nine-switch direct AC-AC converters," IEEE Trans. Power Electron., vol. 4, no. 1, pp. 101-112, Jan. 1989.
[2]J. H. Youm and B. H. Kwon, "Switching technique for current-controlled AC-to-AC converters," IEEE Trans. Ind. Electron., vol. 46, no. 2, pp. 309-318, Apr. 1999.
[3]J. Mahlein, J. Igney, J. Weigold, M. Braun and O. Simon, "Matrix converter commutation strategies with and without explicit input voltage sign measurement," IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 407-414, Apr. 2002.
[4] R. Teichmann and J. Oyama, "ARCP soft-switching technique in matrix converters," IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 353-361, Apr. 2002.
[5] F. Bradaschia, M. C. Cavalcanti, F. Neves and H. de Souza, "A modulation technique to reduce switching losses in matrix converters," IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1186-1195, Apr. 2009.
[6] D. F. Chen and T. H. Liu, “Optimal controller design for a matrix converter based surface mounted PMSM drive system,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 1034-1046, Jul. 2003.
[7] T. H. Liu, S. H. Chen and D. F. Chen, “Design and implementation of a matrix converter PMSM drive without a shaft sensor,” IEEE Trans. Aero. Electron. Sys., vol. 39, no. 1, pp. 228-243, Jan. 2003.
[8] D. F. Chen and T. H. Liu, “Implementation of a novel matrix converter PMSM drive,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 3, pp. 863-875, Jul. 2001.
[9] M. Y. Lee, P. Wheeler and C. Klumpner, “Space-vector modulated multilevel matrix converter,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3385-3394, 2010.
[10] H. Nguyen, H. H. Lee, and T. W. Chun, “Input power factor compensation algorithms using a new direct-svm method for matrix converter,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 232-243, 2011.
[11] K. S. Smith, L. Ran and J. Penman, “Real-time detection of intermittent misfiring in a voltage-fed PWM inverter induction-motor drive,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 468-476, Aug. 1997.
[12] V. John, B. S. Suh, and T. A. Lipo, “Fast clamped short circuit protection of IGBTs”, IEEE Trans. Ind. Appl., vol. 35, no. 2, pp. 477-486, Mar/Apr. 1999.
[13] M. A. Rodriguez, A. Claudio, D. Theilliol and L. G. Vela, “A new fault detection technique for IGBT based on gate voltage monitoring,” in Proc. IEEE Power Electron. Spec. Conf., 2007, pp. 1001-1005.
[14] F. Huang and F. Flett, “IGBT fault protection based on di/dt feedback control,” in Proc. IEEE Power Electron. Spec. Conf., 2007, pp. 1478-1484.
[15] A. M. S. Mendes and A. J. Marques Cardoso, “Voltage source inverter fault diagnosis in variable speed ac drives, by the average current Park’s vector approach,” in Proc. IEMDC, 1999, pp. 704-706.
[16] R. Peuget, S. Courtine and J. P. Rognon, “Fault detection and isolation on a PWM inverter by knowledge-based model,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1318-1326, Nov./Dec. 1998.
[17]R.L. Araujo Ribeiro, C.B. Jacobina, E.R.C. da Silva, and A.M.N. Lima, "Fault detection of open-switch damage in voltage-fed PWM motor drive systems," IEEE Trans. Power Electron., vol. 18, no. 2, pp. 587- 593, Mar. 2003.
[18] O. S. Yu, N. J. Park and D. S. Hyun, “A novel fault detection scheme for voltage fed PWM inverter,” in Proc. IEEE Ind. Electron. Conf., 2006, pp. 2654–2659.
[19] R.L. Araujo Ribeiro, C.B. Jacobina, E.R.C. da Silva and A.M.N. Lima, "Fault-tolerant voltage-fed PWM inverter AC motor drive systems," IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 439-446, Apr. 2004.
[20] P. Nielsen, F. Blaabjerg and J. K. Pedersen, “New protection issues of a matrix converter: Design considerations for adjustable-speed drives,” IEEE Trans. Ind. Appl., vol. 35, no. 5, pp. 1150-1161, Sep./Oct. 1999.
[21]S. Bolognani, M. Zordan and M. Zigliotto, "Experimental fault-tolerant control of a PMSM drive," IEEE Trans. Ind. Electron., vol.47, no.5, pp.1134-1141, Oct. 2000.
[22] T. H. Liu, J. R. Fu and T. A. Lipo, "A strategy for improving reliability of field-oriented controlled induction motor drives," IEEE Trans. Ind. Appl., vol. 29, no. 5, pp. 910-918, Sep./Oct. 1993.
[23] R. S. Chokhawala, J. Catt and L. Kiraly, "A discussion on IGBT short-circuit behavior and fault protection schemes," IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 256-263, Mar./Apr. 1995.
[24] B. A. Welchko, T. A. Lipo, T. M. Jahns and S. E. Schulz, "Fault tolerant three-phase AC motor drive topologies: a comparison of features, cost, and limitations," IEEE Trans. Power Electron., vol. 19, no. 4, pp. 1108-1116, Jul. 2004.
[25] S. Kwak and H. A. Toliyat, "An approach to fault-tolerant three-phase matrix converter drives," IEEE Trans. Energy Conv., vol. 22, no. 4, pp. 855-863, Dec. 2007.
[26]S. Kwak, "Fault-tolerant structure and modulation strategies with fault detection method for matrix converters," IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1201-1210, May 2010.
[27] L. Huber and D. Borojevic, "Space vector modulated three-phase to three-phase matrix converter with input power factor correction," IEEE Trans. Ind. Appl., vol. 31, no. 6, pp. 1234-1246, Nov./Dec. 1995.
[28]C. Klumpner, F. Blaabjerg, I. Boldea and P. Nielsen, "New modulation method for matrix converters," IEEE Trans. Ind. Appl., vol. 42, no. 3, pp. 797-806, May/Jun. 2006.
[29]D. Casadei, G. Serra, A. Tani and L. Zarri, "Matrix converter modulation strategies: a new general approach based on space-vector representation of the switch state," IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 370-381, Apr. 2002.
[30] S. M. A. Cruz, M. Ferreira, and A. J. M. Cardoso, "Output error voltages - a first method to detect and locate faults in matrix converters," in Proc. IEEE-IECON, pp.1319-1325, 10-13 Nov. 2008.
[31]——, "A new method for the detection and location of faults in matrix converters,” in Proc. IEEE-IEMDC, pp. 165-170, May 2009.
[32]S. M. A Cruz, M. Ferreira, A. Mendes and A. J. M. Cardoso, "Modulated error voltages for the diagnosis of faults in matrix converters," in Conf. Rec. IEEE-ECCE, pp. 2263-2270, 20-24 Sept 2009 vol. 47, no. 5, pp. 1134-1141, Oct. 2000.
[33] ——, “Analysis and diagnosis of open-circuit faults in matrix converters,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1648-1661, May 2011.
[34]S. Kim, S. K. Sul and T. A. Lipo, "AC/AC power conversion based on matrix converter topology with unidirectional switches," IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 139-145, Jan/Feb. 2000.
[35]C. Klumpner and F. Blaabjerg, "Experimental evaluation of ride-through capabilities for a matrix converter under short power interruptions," IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 315-324, Apr. 2002.
[36]P. Wheeler and D. Grant, “Optimized input filter design and low loss switching techniques for a practical matrix converter,” Proc. Inst. Elect. Eng., pt. B, vol. 144, no. 1, pp. 53–60, Jan. 1997.
[37]A. Alesina and M. G. B. Venturini, "Solid-state power conversion: A Fourie analysis approach to generalized transformer synthesis,", IEEE Trans. Circuit. Sys., vol. 28, no. 4, pp. 319-330, Apr. 1981.
[38]P. W. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham and A. Weinstein, "Matrix converters: a technology review," IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 276-288, Apr. 2002.

QR CODE