簡易檢索 / 詳目顯示

研究生: 張立穎
Li-Ying Chang
論文名稱: 改良式二元強健局部特徵及其於微光學指紋辨識系統之應用
Improved binary robust local feature extraction and its application to micro-optical fingerprint recognition
指導教授: 郭景明
Jing-Ming Guo
口試委員: 郭天穎
Tien-Ying Kuo
賴坤財
Kuen-Tsair Lay
丁建均
Jian-Jiun Ding
郭景明
Jing-Ming Guo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 226
中文關鍵詞: 局部不變特徵指紋辨識特徵點描述指紋感應器
外文關鍵詞: local invariant feature, fingerprint recognition, feature descriptors, fingerprint scanner
相關次數: 點閱:265下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文貢獻有二: 1)高效能局部穩定特徵萃取與2)改良式指紋特徵擷取技術,並將兩者結合,實現一套即時指紋辨識系統。
    在高效能局部穩定特徵中,本論文提出快速二元強健不變特徵(Fast Binary Robust Local Feature, FBRLF)來有效率地萃取出影像之局部不變特徵與描述。首先,利用自適性角點檢測技術來搜尋影像範圍內的穩定特徵角點,其中預估的穩定特徵可以由兩個可調式參數,最低限制(Lower Bound)與最高限制(Upper Bound)來控制,藉此提升特徵角點的穩定性。為了抑制影像中雜訊的干擾,我們利用高斯權重模板來模擬周圍像素對特徵點的影響力,並透過積分影像的概念來降低計算複雜度,同時為了更進一步改善匹配速度,於是提出投票機制查詢表來針對匹配特徵進行加速,實驗結果顯示本論文提出的方法具有良好的不變性特徵與實用價值,因此可以應用於不同的領域,例如圖形識別、生物辨識系統和監控系統。比起前人的局部穩定特徵技術,本論文提出的方法可以同時提高匹配率及達到即時運算。
    在指紋辨識系統方面,基於傳統的指紋細節特徵之演算法,往往需要伴隨高複雜度的影像前處理與不穩定之細節特徵萃取,造成指紋辨識系統精準度不佳及高運算成本。針對上述問題本論文提出所提出之基於快速二元強健不變特徵(FBRLF)之指紋辨識演算法來解決傳統指紋辨識技術的辨識率與效率問題。同時,本論文對於微小型指紋感應器提出穩健的指紋採集方式。實驗結果方面,本論文採用實驗室資料庫與FVC公開資料庫個別進行測試,並與前人的方法比較,從結果可以看出不論是系統辨識率或處理效能皆是相當突出的。最後為了將所學回饋於現實生活之中,本論文將所提出之指紋辨識演算法以平板電腦與微光學式感應器設計出一套介面化即時指紋辨識系統。


    This thesis presents two techniques for a real-time fingerprint recognition system. The first technique delivers an efficient feature extraction with local invariant capability, namely Fast Binary Robust Local Feature (FBRLF), and the other technique presents the improved strategy for the fingerprint recognition system.
    The FBRLF searches the stable features on an image which can be simply modeled using the adaptive Features from Accelerated Segment Test (FAST) corner detection with two user-defined parameters to yield stable features. To overcome the image noise, the Gaussian template is applied, and it is efficiently boosted by the integral image evaluation. In addition, the feature matching is conducted by incorporating the voting mechanism and lookup table method to achieve a high accuracy with low computational complexity. Experimental results demonstrate the superiority of the proposed method, making it suited for various applications such as pattern recognition, biometrics recognition systems, surveillance system, etc. In particular, the proposed method achieves a superior match rating in real-time fashion compared to that of the former competing schemes.
    The traditional minutiae-based fingerprint recognition system requires a high computational complexity in the preprocessing stage. Most of them invlove unstable features, leading to a poor fingerprint recognition accuracy and heavy computational burden. The proposed fingerprint recognition system overcomes these issues by utilizing the proposed FBRLF. This system is built under Surface Pro 3, and is equipped with micro-optical fingerprint scanner to construct a real-time fingerprint recognition system. Two fingerprint databases are involved for the performance test of the proposed system. The first database is from manually generated fingerprint images, and the other is the FVC fingerprint standard database. Experimental results clearly demonstrate the superiority of the proposed method compared to the former schemes in terms of fingerprint recognition performance and processing efficiency.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 圖表索引 VIII 第一章緒論 1 1.1 研究背景與動機 1 1.2 研究設計與目標 3 1.3 系統流程 8 1.4 論文架構 10 第二章 文獻探討 11 2.1 前言 11 2.2 指紋辨識技術之感應器探討 13 2.3 基於指紋細節特徵比對演算法之相關文獻 22 2.3.1 指紋影像擷取(Fingerprint acquisition) 24 2.3.2 指紋影像前處理(Image preprocessing) 24 2.3.3 指紋影像之細節特徵萃取技術(Feature extraction) 31 2.3.4 指紋影像的比對(Feature matching) 41 2.4 局部性穩健特徵匹配演算法之相關文獻 54 2.4.1 局部SIFT穩定特徵之理論基礎 57 2.4.2 局部SURF穩定特徵之理論基礎 75 2.4.3 局部BRIEF穩定特徵之理論基礎 85 2.4.4 局部ORB穩定特徵之理論基礎 89 2.4.5 局部BRISK穩定特徵之理論基礎 91 2.4.6 局部KAZE與AKAZE穩定特徵之理論基礎 92 2.4.7 基於局部穩定特徵應用於指紋辨識之相關文獻 97 第三章 改良式二元強健局部特徵技術 100 3.1 技術前言 100 3.2 尺度空間角點檢測 105 3.2.1 快速角點偵測 105 3.2.2 自適性FAST角點檢測結合尺度空間 108 3.2.3 最低限制(Lower Bound)與最高限制(Upper Bound)之參數 114 3.3 特徵點位置精準化 117 3.4 特徵點方向確定 118 3.5 特徵點描述 124 3.5.1 快速二元強健不變特徵(FBRLF)之特徵點描述 126 3.5.2 積分圖影像(Integral Image) 131 3.6 特徵點匹配 136 3.6.1 漢明距離(Hamming Distance) 137 3.6.2 投票機制查詢表技術 140 3.7 實驗結果 146 3.7.1 資料庫影像與測試環境說明 146 3.7.2 視角變化測試 148 3.7.3 尺度變化測試 150 3.7.4 旋轉變化測試 152 3.7.5 模糊變化測試 154 3.7.6 光影變化測試 156 3.7.7 處理時間測試 158 第四章 微光學指紋辨識演算法 159 4.1 技術前言 159 4.2 指紋辨識演算法設計 162 4.2.1 影像前處理(Image preprocessing) 165 4.2.2 特徵點除錯 170 4.3 硬體規格說明 176 4.3.1 硬體規格設定 176 4.3.2 硬體採集設定 178 4.4 系統功能說明 188 4.5 實驗結果 195 4.5.1 資料庫影像說明與測試環境說明 196 4.5.2 微光學式指紋感應器資料庫測試 198 4.5.3 國際指紋識別競賽(FVC2002)資料庫測試 200 第五章 結論與未來展望 202 參考文獻 204

    [1] M. Hase and A. Shimisu, “Entry method of fingerprint image using a prism,” Transaction Institute Electron. Commum. Eng. Jpn., vol. J67-D, pp. 627-628, 1984.
    [2] X. Xia and L. O’Gorman, “Innovations in fingerprint capture devices,” Pattern Recognition, vol. 36, no. 2, pp. 361–369, 2003.
    [3] J. S. Han; T. Kadowaki; K. Sato; M. Shikida “Thermal analysis of fingerprint sensor having a microheater array,” IEEE International Symposium on Micro-mechatronics and Human Science, pp. 627-628, 1999
    [4] J. K. Schneider, “Ultrasonic fingerprint sensors,” Advances in Biometrics: Sensors, Algorithms and Systems, N.K. Ratha and V. Govindaraju (Eds.), Springer, London, pp. 63–74, 2007.
    [5] M. U. Akram, A. Tariq, S. Jabeen and S. A. Khan, “Fingerprint image segmentation based on boundary values,” International Conference on Computer Vision Theory and Application, January, 2008.
    [6] L. Hong, Y. Wan, A. Jain, “Fingerprint image Enhancement: Algorithm and Performance Evaluation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 777-789, Aug., 1998.
    [7] T. Ko,”Fingerprint Enhancement by Spectral Analys Techniques,” The proceedings of Applies Imagery Pattern Recognition Workshop, pp. 133-139, 2002.
    [8] T. R. Singh, R. Sudipta, O. I. Singh, T. Sinam and K. M. Singh, “A New Local Adaptive Thresholding Technique in Binarization,” International Journal of Computer Science Issues, vol. 8, no 2, November, 2011.
    [9] L. Lam, S. W. Lee and C. Y. Suen, “Thinning methodologies – a comprehensive survey,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 14, no. 9, pp. 869-885, Sept., 1992.
    [10] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital pictures,” Communications of the ACM archive, vol. 27, no. 3, pp.236-239, March, 1984.
    [11] R. M. McCabe, “Fingerprint interoperability standards,” Automatic Fingerprint Recognition Systems, N. Ratha and R. Bolle (Eds.), Springer, New York, pp. 433–451, 2004.
    [12] L. Hong, A. Jain, Y. Wan, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.20, no.8, pp.777-789, 1998.
    [13] L. Wieclaw, “A Minutiae-based Matching Algorithms in Fingerprint Recognition Systems,” Journal of Medical Informatics & Technologies, vol. 13, ISSN 1642-6037, 2009.
    [14] Y. Wang and J. Hu, “Global Ridge Orientation Modeling for Partial Fingerprint Identification,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 33, no.1, pp. 72-87, January, 2011.
    [15] A. K. Jain and J. Feng, “Latent Fingerprint Matching,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 33, no.1, pp. 88-100, January, 2011.
    [16] S. Kim, D. Lee and J. Kim, “Algorithm for Detection and Elimination of False Minutiae in Fingerprint Images,” International Conference on Audio- and Video-Based Biometric Person Authentication (3rd), pp. 235–240, 2001.
    [17] F. Zhao and X. Tang, “Preprocessing and postprocessing for skeleton-based fingerprint minutiae extraction,” Pattern Recognition, vol. 40, no. 4, pp. 1270–1281, 2007.
    [18] X. Jiang and W. Y. Yau, “Fingerprint minutiae matching based on the local and global structures,” International Conference on Pattern Recognition, Vol.2, pp. 1038–1041, 2002.
    [19] L. Sha, F. Zhao and X. Tang, “A Two-Stage Fusion Scheme using Multiple Fingerprint Impressions,” International Conference on Image Processing, vol. 2, pp. 385–388, 2007.
    [20] A. M. Bazen, G. T. B. Verwaaijen, S. H. Gerez, L. P. J. Veelenturf and B. J. van der Zwaag,“A Correlation-Based Fingerprint Verification System,” International Workshop on Circuits Systems and Signal Processing, 2000.
    [21] H. Yahagi, S. Igaki and F. Yamagishi, “Moving-Window Algorithm for Fast Verification,” International Conference on Southeastcon Proceedings, vol. 1, pp. 343–348, 1990.
    [22] Z. M. Kovacs-Vajna, R. Rovatti and M. Frazzoni, “Fingerprint ridge distance computation methodologies,” Pattern Recognition, vol. 33, no. 1, pp. 69–80, 2000.
    [23] C. Beleznai, H. Ramoser, B. Wachmann, J. Birchbauer, H. Bischof and W. Kropatsch, “Memory-Efficient Fingerprint Verification,” International Conference on Image Processing, vol. 2, pp. 463–466, 2001.
    [24] M. Govan and T. Buggy, “A Computationally Efficient Fingerprint Matching Algorithm for Implementation on Smartcards,” International Conference on Biometrics: Theory, Applications, and Systems (BTAS 07), pp. 1–6, 2007.
    [25] H. Choi, K. Choi and J. Kim, “Fingerprint matching incorporating ridge features with minutiae,” IEEE Trans. on Forensics Security, vol. 6, pp.338-345, June, 2011.
    [26] T. Y. Jea, V. Govindaraju, “A minutia-based partial fingerprint recognition system,” Pattern Recognition, pp.1672-1684, 2005.
    [27] R. Ahuja, T. Magnanti and J. Orlin, Network Flows, Prentice-Hall, Upper Saddle River, NJ, 1993.
    [28] C. Wang, M. Gavrilova, Y. Luo and J. Rokne, “An Efficient Algorithm forFingerprint Matching,” International Conference on Pattern Recognition (18th), vol. 1, pp. 1034–1037,2006.
    [29] J. S. Chen and Y. S. Moon, “A Statistical Evaluation Model for Minutiae-Based utomatic Fingerprint Verification Systems,” International Conference on Biometrics, LNCS 3832, pp.236–243, 2006.
    [30] P. Melin, D. Bravo and O. Castillo, “Fingerprint Recognition Using odular Neural Networks and Fuzzy Integrals for Response Integration,” International Joint Conference on Neural Networks, vol. 4, pp. 2589–2594, 2005.
    [31] P. Mansukhani, S. Tulyakov and V. Govindaraju, “Using Support Vector Machines to Eliminate False Minutiae Matches During Fingerprint Verification,” SPIE Conference on Biometric Technology for Human Identification IV, 2007.
    [32] H. Moravec, ”Obstacle Avoidance and Navigation in the Real World by Seeing Robot Rover,” Tech Report CMU-RI-TR-3, Carnegie-Mellon University, Robotics Institute, September, 1987.
    [33] C. Harris, M. Stephens,”A Combined Corner and Edge Detector,” Alvey Vision Conference, Manchester, UK, pp. 147–151, 1988.
    [34] J. Koenderink,” The structure of images,” Biological Cybernetics, Springer, pp.363-370, 1984.
    [35] T. Lindeberg,”Detecting Salient Blob-Like Image Structures and Their Scales with a Scale-Space Primal Sketch: A Method for Focus-of-Attention,” International Journal of Computer Vision, Springer, 1993.
    [36] K. Mikolajczy, C. Schmid, ”An affine invariant interest point detector,” The 8th International Conference on Computer Vision, Vancouver, Canada, 2002.
    [37] D. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 2, pp. 91–110, January, 2004.
    [38] H. Bay, T. Tuytelaars, and L.V. Gool,”Speeded-Up Robust Features (SURF),” Computer vision and image understanding, vol. 2, pp.346-359, 2008.
    [39] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust independent elementary features,” European Conference on Computer Vision, pp. 778-792, 2010.
    [40] R. Ethan, R. Vincent, K. Kurt and B. Gary, “ORB: an efficient alternative to SIFT or SURF,” IEEE International Conference on Computer Vision, pp. 2564–2571, 2011.
    [41] S. Leutenegger, M. Chli and R. Y. Siegwart,”BRISK: Robust Invariant Scalable Keypoints,” IEEE International Conference on Computer Vision, pp.2548-2555, 2011.
    [42] P. F. Alcantarilla, A. Bartoli and A. J. Davison., “KAZE Features,” European Conference on Computer Vision, pp. 214-227, 2012.
    [43] P. F. Alcantarilla, A. Bartoli and A. J. Davison., “Fast Explicit Diffusion for Accelerated features in Nonlinear Scale Spaces,” British Machine Vision Conference, 2013.
    [44] E. Rosten and T. Drummond, “Machine learning for high speed corner detection.,” European Conference on Computer Vision, pp. 430-443, 2006
    [45] U. Park, S. Pankanti and A. K. Jain, “Fingerprint Verification Using SIFT Features,” International of SPIE Defense and Security Symposium, March, 2008.
    [46] R. Zhou, S. Sin, D. Li, T. Isshili and H. Kunieda,” Adaptive SIFT-Based Algorithm for Specific Fingerprint Verification,” International Conference on Hand-Based Biometrics, pp.1-6, 2011.
    [47] R. Zhou, D. Zhong and J. Han, “Fingerprint Identification Using SIFT-Based Minutia Descriptors and Improved ALL Descriptor-Pair Matching,’ Journal of Sensors, vol. 13, pp. 3142–3156, March, 2013.
    [48] P. Viola and M. J. Jones, “Robust real-time object detection,” Second International Workshop on Statistical and Computational Theories of Vision, PP 51-52, July, 2001.
    [49] K. Mikolajczyk, C. Schmid, “A performance evaluation of local descriptors,” IEEE Tran. on Pattern Analysis and Machine Intelligence, vol. 27, pp. 1615–1630, 2005.
    [50] M. A. Fischler, R. C. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography,” Comm. of the ACM, Vol 24, pp 381-395, 1981.

    QR CODE