簡易檢索 / 詳目顯示

研究生: 陳俊擇
Chun-Tse Chen
論文名稱: 用於氧氣還原反應之 二氧化鈦核鉑殼觸媒結構優化
Structure modification of TiO2@Pt core-shell catalyst for oxygen reduction reaction
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-nien Su
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-nien Su
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 159
中文關鍵詞: TiO2@Pt光沉積核殼型結構氧氣還原反應
外文關鍵詞: TiO2@Pt, photo-deposition, core-shell structure, oxygen reduction reaction
相關次數: 點閱:308下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

設計及合成新的ORR鉑基奈米結構觸媒,是本實驗的主題。先前,本實驗室曾提出無載體二氧化鈦核鉑殼之核殼結構作為模型催化劑,可以有效的產生ORR催化作用,然而以此光沉積方式的TiO2@Pt觸媒,其鉑殼結構不連續,ORR催化性能有相當的改善空間。在本研究工作中,以滴定方式改善了光沉積方法來合成TiO2@Pt觸媒,控制白金粒子生長。由HRTEM之影像和TEM mapping中顯示此二氧化鈦核上已形成一完整鉑殼,其鉑殼厚度約為2~3奈米。從XRD的角度顯示此鉑殼為許多超小鉑顆粒堆積而成。由XAS可知此二氧化鈦核鉑殼觸媒系統具有強觸媒-載體交互作用(Strong Metal-Support Interaction, SMSI)。而電化學測試方面表示,此TiO2@Pt比商業化鉑奈米顆粒具有超過5倍的單位面積活性和8倍的質量活性,且由於此TiO2@Pt結構設計配置使在提高穩定性方面有重大的進展,在5000次循環後ECSA和質量活性均未降低。 預期在將來透過殼結構調整可以開發出更有效的ORR催化劑。


Design and synthesis of new nano-structured Pt-based ORR catalysts is highly needed. In previous work, for the first time, we proposed that unsupported core-shell TiO2@Pt (TiO2cPts) particles as a model catalyst could generate efficient ORR catalysis. However, TiO2@Pt particles derived from the photo-deposition method did not have a completely covered Pt shell structure, and thus it did not achieve expected ORR catalytic activity. In this work, the photo-deposition method was improved by droplet controlled growth of Pt nanoparticles to synthesize TiO2@Pt. High-resolution transmission electron microscopy (TEM) and elemental mapping images showed that the complete Pt shell on TiO2 core was formed, and the thickness of Pt shell was 2-3 nm. X-ray diffraction (XRD) reveals that Pt shell is composed of numerous ultra-small Pt clusters. X-ray absorption spectroscopy (XAS) shows that TiO2@Pt indicate the presence of Strong Metal-Support Interaction (SMSI). Electrochemical tests demonstrate that TiO2@Pt exhibits over 5-fold specific activity and 8-fold mass activity than commercial Pt nanoparticles. This uniquely designed configuration with TiO2-core and Pt thin shell has made a significant progress in improving the stability. The durability test shows no degradation in both ECSA and mass activity after 5000 cycles. More efficient ORR catalysts can be expected by further fine tuning of the shell structure in TiO2@Pt.

摘要 VII ABSTRACT IX 致謝 XI 目錄 I 圖目錄 V 表目錄 XI 第一章 緒論 1 1.1前言 1 1.2燃料電池之發展及趨勢 3 1.3質子交換膜燃料電池 (PROTON EXCHANGE MEMBRANE FUEL CELL, PEMFC) 5 1.4 PEMFC 陰極觸媒(PEMFC CATHODE CATALYST) 10 1.5研究動機與目的 15 第二章 文獻回顧 17 2.1燃料電池觸媒介紹 17 2.2純鉑觸媒的尺寸效應 18 2.3提高白金利用率 18 2.4碳載體觸媒開發 21 2.5金屬氧化物載體 23 2.5.1二氧化鈦 25 2.6光沉積 27 2.6.1光沉積還原鉑於二氧化鈦上 28 2.7奈米粒子生長 30 2.7.1核之生成(nucleation) 30 2.7.2核之生長(growth) 31 第三章 實驗設備與方法 33 3.1實驗設備 33 3.2實驗藥品 35 3.3實驗步驟 36 3.3.1二氧化鈦顆粒篩選 37 3.3.2白金前驅物投料量估算 39 3.3.3光沉積方法I 41 3.3.4光沉積方法II 42 3.3.5樣品清單與命名 43 3.4電化學漿料調配 45 3.5材料鑑定與分析 46 3.5.1X射線繞射儀(XRD) 46 3.5.2感應偶合電漿光譜儀(ICP-AES) 50 3.5.3穿透式電子顯微鏡 (TEM) 50 3.5.4掃描式電子顯微鏡 (SEM) 52 3.5.5紫外光-可見光光譜分析 (UV-vis) 56 3.5.6 X光吸收光譜原理 57 3.5.7電化學原理 68 第四章 結果與討論 79 4.1白金殼層結構合成方式優化 79 4.1.1粒子晶體生長原理 79 4.1.2合成之改善方式 80 4.2二氧化鈦篩選 82 4.2.1沉降之原理 82 4.2.2結構與特性分析 84 4.3二氧化鈦核之尺寸效應 86 4.3.1結構與特性分析 87 4.4合成條件優化 91 4.4.1鉑前驅物投料量之優化 91 4.4.2光通量(光強度*反應時間)與反應速率之優化 94 4.5最適化樣品之結構與特性量測 99 4.5.1穿透式電子顯微鏡(TEM) 99 4.5.2感應偶和電漿放射光譜(ICP-AES) 103 4.5.3 X射線繞射儀(XRD) 104 4.5.4 X光吸收光譜(XAS) 106 4.6最適化樣品與商業化觸媒之電化學特性量測 111 4.6.1循環伏安分析 111 4.6.2氧氣還原極化曲線(ORR) 113 4.6.3觸媒穩定度測試( ADT ) 115 第五章 結論 120 第六章 未來展望 122 第七章 參考文獻 123

[1] S.-Y. Huang, P. Ganesan, S. Park, B.N. Popov, Development of a Titanium Dioxide-Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications, Journal of the American Chemical Society 131(39) (2009) 13898-13899.
[2] S.-Y. Huang, P. Ganesan, B.N. Popov, Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell, Applied Catalysis B: Environmental 102(1) (2011) 71-77.
[3] S. Shanmugam, A. Gedanken, Synthesis and Electrochemical Oxygen Reduction of Platinum Nanoparticles Supported on Mesoporous TiO2, The Journal of Physical Chemistry C 113(43) (2009) 18707-18712.
[4] K.-W. Park, Y.-W. Lee, J.-K. Oh, D.-Y. Kim, S.-B. Han, A.R. Ko, S.-J. Kim, H.-S. Kim, TiO2-based nanowire supported catalysts for methanol electrooxidation in direct methanol fuel cells, Journal of Industrial and Engineering Chemistry 17(4) (2011) 696-699.
[5] Ferreira, P. J.; La O, G. J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H. A., Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells: A mechanistic investigation. Journal of the Electrochemical Society 2005, 152 (11), A2256-A2271.
[6] S. Solomon, G.-K. Plattner, R. Knutti, P. Friedlingstein, Irreversible climate change due to carbon dioxide emissions, Proceedings of the National Academy of Sciences (2009).
[7] L. Carrette, K.A. Friedrich, U. Stimming, Fuel Cells – Fundamentals and Applications, Fuel Cells 1(1) (2001) 5-39.
[8] 燃料電池技術(II) 台灣大學機械工程系能源環境實驗室, https://slidesplayer.com/slide/11732733/, (2009).
[9] 質子交換膜型燃料電池膜電極組(MEA)-專利地圖與專利分析, https://goo.gl/8vdMUK, (2005).
[10] 盛英股份有限公司,質子交換膜燃料電池原理, http://www.uic.com.tw/product_list.php?cid=6&id=28.
[11]H.DELIVERY,<https://energy.gov/eere/fuelcells/hydrogen-delivery>, 2014.
[12] D. Simbeck, and S. F. A. Pacific, Biggest Challenge for the Hydrogen Economy Hydrogen Production & Infrastructure Costs., (2003).
[13] K.P. Kendall, B. 4.12-Hydrogen and Fuel Cells in Transport, (2012).
[14] H. STORAGE, <https://energy.gov/eere/fuelcells/hydrogen-storage>, (2015).
[15] B. Erable, D. Féron, A. Bergel, Microbial Catalysis of the Oxygen Reduction Reaction for Microbial Fuel Cells: A Review, ChemSusChem 5(6) (2012) 975-987.
[16] C.H. Hamann, A. Hammnett, and W. Vielstich, Electrochemistry, ed. 1st. 1998: Wiley-VCH, Weinheim.
[17] B. Wang, Recent development of non-platinum catalysts for oxygen reduction reaction, Journal of Power Sources 152 (2005) 1-15.
[18] Wroblowa, H. S.; Yen Chi, P.; Razumney, G., Electroreduction of oxygen a new mechanistic criterion. Journal of Electroanalytical Chemistry 1976, 69 (2), 195-201.
[19] Lai, F.-J.; Sarma, L. S.; Chou, H.-L.; Liu, D.-G.; Hsieh, C.-A.; Lee, J.-F.; Hwang, B.-J., Architecture of Bimetallic PtxCo1−x Electrocatalysts for Oxygen Reduction Reaction As Investigated by X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2009, 113 (29), 12674-12681.
[20] Hwang, B. J.; Kumar, S. M. S.; Chen, C.-H.; Monalisa; Cheng, M.-Y.; Liu, D.-G.; Lee, J.-F., An Investigation of Structure−Catalytic Activity Relationship for Pt−Co/C Bimetallic Nanoparticles toward the Oxygen Reduction Reaction. The Journal of Physical Chemistry C 2007, 111 (42), 15267-15276.
[21] Marković, N. M.; Schmidt, T. J.; Stamenković, V.; Ross, P. N., Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. Fuel Cells 2001, 1 (2), 105-116.
[22] Y. Sha, T.H. Yu, Y. Liu, B.V. Merinov, W.A. Goddard, Theoretical Study of Solvent Effects on the Platinum-Catalyzed Oxygen Reduction Reaction, The Journal of Physical Chemistry Letters 1(5) (2010) 856-861.
[23] E. Antolini, Formation of Carbon-Supported PtM Alloys for Low Temperature Fuel Cells, 2003.
[24] D. Das, I.V. Sabaraya, T. Zhu, T. Sabo-Attwood, N.B. Saleh, Aggregation Behavior of Multiwalled Carbon Nanotube-Titanium Dioxide Nanohybrids: Probing the Part-Whole Question, Environmental Science & Technology (2018).
[25] A. Kumar, V. Ramani, Strong Metal–Support Interactions Enhance the Activity and Durability of Platinum Supported on Tantalum-Modified Titanium Dioxide Electrocatalysts, ACS Catalysis 4(5) (2014) 1516-1525.
[26] V.T.T. Ho, C.-J. Pan, J. Rick, W.-N. Su, B.-J. Hwang, Nanostructured Ti0.7Mo0.3O2 Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction, Journal of the American Chemical Society 133(30) (2011) 11716-11724.
[27] B. Avasarala, P. Haldar, On the stability of TiN-based electrocatalysts for fuel cell applications, International Journal of Hydrogen Energy 36(6) (2011) 3965-3974.
[28] Y.-J. Wang, D.P. Wilkinson, J. Zhang, Noncarbon Support Materials for Polymer Electrolyte Membrane Fuel Cell Electrocatalysts, Chemical Reviews 111(12) (2011) 7625-7651.
[29] S.J. Tauster, S.C. Fung, R.T.K. Baker, J.A. Horsley, Strong Interactions in Supported-Metal Catalysts, Science 211(4487) (1981) 1121.
[30] M. Shao, A. Peles, K. Shoemaker, Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity, Nano Letters 11(9) (2011) 3714-3719.
[31] H. Zhang, T. Watanabe, M. Okumura, M. Haruta, N. Toshima, Catalytically highly active top gold atom on palladium nanocluster, Nature Materials 11 (2011) 49.
[32] D.-Y. Wang, H.-L. Chou, C.-C. Cheng, Y.-H. Wu, C.-M. Tsai, H.-Y. Lin, Y.-L. Wang, B.-J. Hwang, C.-C. Chen, FePt nanodendrites with high-index facets as active electrocatalysts for oxygen reduction reaction, Nano Energy 11 (2015) 631-639.
[33] F. Taufany, C.-J. Pan, J. Rick, H.-L. Chou, M.-C. Tsai, B.-J. Hwang, D.-G. Liu, J.-F. Lee, M.-T. Tang, Y.-C. Lee, C.-I. Chen, Kinetically Controlled Autocatalytic Chemical Process for Bulk Production of Bimetallic Core–Shell Structured Nanoparticles, ACS Nano 5(12) (2011) 9370-9381.
[34] D. Wang, H.L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F.J. DiSalvo, H.D. Abruña, Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts, Nature Materials 12 (2012) 81.
[35] L. Zhang, L.T. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S.-I. Choi, J. Park, J.A. Herron, Z. Xie, M. Mavrikakis, Y. Xia, Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets, Science 349(6246) (2015) 412.
[36] E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Applied Catalysis B: Environmental 88(1) (2009) 1-24.
[37] J.C. Meier, C. Galeano, I. Katsounaros, J. Witte, H.J. Bongard, A.A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schüth, K.J.J. Mayrhofer, Design criteria for stable Pt/C fuel cell catalysts, Beilstein Journal of Nanotechnology 5 (2014) 44-67.
[38] J.C. Meier, C. Galeano, I. Katsounaros, A.A. Topalov, A. Kostka, F. Schüth, K.J.J. Mayrhofer, Degradation Mechanisms of Pt/C Fuel Cell Catalysts under Simulated Start–Stop Conditions, ACS Catalysis 2(5) (2012) 832-843.
[39] X. Ma, H. Meng, M. Cai, P.K. Shen, Bimetallic Carbide Nanocomposite Enhanced Pt Catalyst with High Activity and Stability for the Oxygen Reduction Reaction, Journal of the American Chemical Society 134(4) (2012) 1954-1957.
[40] X. Li, A.L. Zhu, W. Qu, H. Wang, R. Hui, L. Zhang, J. Zhang, Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries, Electrochimica Acta 55(20) (2010) 5891-5898.
[41] S.J. Tauster, S.C. Fung, R.L. Garten, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide, Journal of the American Chemical Society 100(1) (1978) 170-175.
[42] J. Ma, E. Valenzuela, A.S. Gago, J. Rousseau, A. Habrioux, N. Alonso-Vante, Photohole Trapping Induced Platinum Cluster Nucleation on the Surface of TiO2 Nanoparticles, The Journal of Physical Chemistry C 118(2) (2014) 1111-1117.
[43] F.F. Karam, F.H. Hussein, S.J. Baqir, A.F. Halbus, R. Dillert, D. Bahnemann, Photocatalytic Degradation of Anthracene in Closed System Reactor, International Journal of Photoenergy 2014 (2014) 6.
[44] Che-Hsin Yang, C.-C. Y., Journal of CHEN-MIN college 2002.
[45] L.M. Ahmed, I. Ivanova, F.H. Hussein, D.W. Bahnemann, Role of Platinum Deposited on TiO2 in Photocatalytic Methanol Oxidation and Dehydrogenation Reactions, International Journal of Photoenergy 2014 (2014) 9.
[46] V.K. LaMer, R.H. Dinegar, Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, Journal of the American Chemical Society 72(11) (1950) 4847-4854.
[47] H. Reiss, The Growth of Uniform Colloidal Dispersions, The Journal of Chemical Physics 19(4) (1951) 482-487.
[48] N.T.K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of Nucleation and Growth of Nanoparticles in Solution, Chemical Reviews 114(15) (2014) 7610-7630.
[49] P.W. Voorhees, The theory of Ostwald ripening, Journal of Statistical Physics 38(1) (1985) 231-252.
[50] R. Van Santen, The Ostwald step rule, The Journal of Physical Chemistry 88(24) (1984) 5768-5769.
[51] A.B. Levit, R.L. Rowell, Time dependence of the size distribution, number concentration and surface area in La Mer sulfur sols, Journal of Colloid and Interface Science 50(1) (1975) 162-169.
[52] F. Wang, V.N. Richards, S.P. Shields, W.E. Buhro, Kinetics and Mechanisms of Aggregative Nanocrystal Growth, Chemistry of Materials 26(1) (2014) 5-21.
[53] T.D. Tran, S.H. Langer, Electrochemical measurement of platinum surface areas on particulate conductive supports, Analytical Chemistry 65(13) (1993) 1805-1807.
[54] N.M. Marković, B.N. Grgur, C.A. Lucas, P.N. Ross, Electrooxidation of CO and H2/CO Mixtures on Pt(111) in Acid Solutions, The Journal of Physical Chemistry B 103(3) (1999) 487-495.

QR CODE