簡易檢索 / 詳目顯示

研究生: 邱芸暄
Yun-Xuan Qiu
論文名稱: 靜電紡絲製備鎳錳摻雜型硫氧化鋅/碳材複合纖維光催化劑於高效析氫應用
Electrospinned Ni- and Mn-doped zinc oxysulfide/ carbon microfibrous composite photocatalysts for highly efficient hydrogen evolution
指導教授: 郭東昊
Dong-Hau Kuo
王賈荃
Hairus Abdullah
口試委員: 郭東昊
Dong-Hau Kuo
柯文政
Wen-Cheng Ke
薛人愷
Ren-Kae Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 121
中文關鍵詞: 靜電紡絲硫化鋅複合材料光催化水分解
外文關鍵詞: Electrospinning, Zinc sulfide, Composite material, Photocatalytic water splitting
相關次數: 點閱:493下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

光催化是能克服能源短缺與全球暖化的技術之一,此技術已廣泛應用於產氫、二氧化碳還原、有機汙染物降解、生質能轉換等眾多應用,都是為環境議題尋找一個可靠又穩定的解決方案。然而,光催化劑需具備高活性、氧化還原能力及物質合成和轉換等目的,因此科學家紛紛尋找可增強光催化能力的方法。要實現光生電子-電洞對的有效分離以及隨後的能量轉移過程仍然具有挑戰性,為了克服此限制,可採取一些策略,例如金屬摻雜與p-n複合光觸媒,其係支持大規模應用的最簡便方法,且可降低電子-電洞對復合的機率。
本研究藉由靜電紡絲技術進行Ni與Mn金屬對低成本Zn(O,S)材料進行改質。利用X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、能量散射X-ray譜分析(EDS)、X射線光電子能譜(XPS)、穿透式電子顯微鏡(TEM)對所製備的Zn(O,S)複合纖維光催化劑進行物理與化學現象分析,此外,紫外/可見光漫反射光譜儀(DRS)、螢光光譜儀(PL)、電化學阻抗頻譜法(EIS)、瞬態光電流(TPC)、Mott-Schottky圖譜(MS)及循環伏安法(CV)用於光學及電特性分析。最後,用所製備的Ni摻雜Zn(O,S)和Ni摻雜Zn(O,S)/MnS2纖維複合材料進行光催化析氫反應。結果顯示,摻雜Ni可將氫氣產率提高至648.2 μmol g-1h-1,進一步使用摻雜Ni的 Zn(O,S)/MnS2 進行改質,由於p-n異質結構的形成,增強電荷分離,氫氣產率可達2036.4 μmol g-1h-1。


Photocatalysis is one of the sustainable technologies that can overcome energy shortages and global warming. This technology has been widely used in many applications, such as producing hydrogen, reducing carbon dioxide, degrading organic pollutants, and converting biomass to energy. It is all about finding a reliable and stable solution for environmental issues. However, photocatalysts must have high activity, redox ability, material synthesis, conversion, etc. Therefore, scientists are looking for ways to enhance photocatalytic ability. Effective separation of photogenerated electron-hole pairs and the subsequent energy transfer process are still challenges in photocatalysis. Some strategies can be adopted to overcome this limitation, such as metal doping and p-n composite photocatalyst, which are some of the most convenient methods to support a large-scale application. They can reduce the probability of electron-hole pair recombination.
This study uses an electrospinning method to modify a low-cost Zn(O,S) material with Ni and Mn metals. The as-prepared Zn(O,S)-based microfiber catalysts are identified with X-ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), energy dispersive X-ray spectrum analysis (EDS), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscope (TEM) to analyze its physical and chemical phenomena. Moreover, UV-VIS/NIR Spectrophotometer (DRS), photoluminescence (PL), Electrochemistry Impedance Spectroscopy (EIS), Transient Photocurrent (TPC), Mott-Schottky(MS), and Cyclic voltammetry (CV) are used to analyze optical and electrochemical properties. Finally, the photocatalytic hydrogen generation reaction is demonstrated with the as-prepared Ni-doped Zn(O,S) and Ni-doped Zn(O,S)/MnS2 composite microfibers. The results indicated Ni dopant could improve the hydrogen production rate to 648.2 μmol g-1h-1. Further modification with Ni-doped Zn(O,S)/MnS2 allows the hydrogen generation rate to achieve 2036.4 μmol g-1h-1 because the p-n heterojunction formation enhances the charge separation.

中文摘要 iii 致謝 iv 目錄 v 圖目錄 ix 表目錄 xiv 第一章、緒論 1 1.1 前言 1 Abstract 1.2 研究動機與目的 3 第二章、文獻回顧與原理 5 2.1 半導體光催化 5 2.1.1 半導體光催化簡介 5 2.1.2 光催化原理與機制 5 2.2 靜電紡絲工程 8 2.2.1 靜電紡絲簡介 8 2.2.2 靜電紡絲裝置 8 2.2.3 靜電紡絲原理 9 2.2.4 影響靜電紡絲的因素 10 2.3 Zn(O,S) 13 2.3.1 ZnO-ZnS固溶體 13 2.3.2 Zn(O,S)奈米顆粒 16 2.3.3 ZnNi(O,S) 21 2.4 聚合物附載的光催化劑 23 2.4.1 靜電紡絲高結晶ZnO奈米纖維:超高效穩定的光催化製氫 23 2.4.2 MgTiO3奈米纖維及其光催化水分解 25 2.4.3 Cr、La共摻雜對Sr1-xLaxTi1-xCrxO3奈米纖維光催化製氫性能的影響 27 2.4.4 CdS/ZnO奈米複合材料用於光催化水分解反應 29 2.4.5 Ta3N5/ZnO奈米纖維顯著提高光催化產氫能力 32 2.4.6 靜電紡絲製備 CdS/ZnS/ZnO 三元異質結構奈米纖維 35 第三章、實驗方法與步驟 39 3.1 實驗材料及規格 39 3.2 實驗設備 40 3.2.1 分析電子天平 40 3.2.2 加熱磁石攪拌器 40 3.2.3 超音波震盪機 40 3.2.4 靜電紡絲機 40 3.2.5 箱型高溫爐 40 3.2.6 氙燈光源 40 3.2.7 烘箱 41 3.2.8 電化學雙恆電位儀 41 3.3 實驗步驟 42 3.3.1 混合Zn(Ac)2、Ni(Ac)2、Mn(Ac)2、TAA、PVP前驅物 43 3.3.2 靜電紡絲成光觸媒纖維 45 3.3.3 太陽光吸收之光催化劑特性量測 45 3.4 分析儀器介紹及測量參數 46 3.4.1 高解析度場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy, FESEM) 46 3.4.2 場發射穿透式電子顯微鏡(Field Emission Gun Transmission Electron Microscope, FEG-TEM+EDS) 47 3.4.3 高功率X光繞射儀(High Power X-ray Diffractomter, XRD) 49 3.4.4 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 50 3.4.5 紫外光-可見光漫反射光譜儀(UV-VIS Diffuse Reflectance Spectroscopy) 51 3.4.6 螢光光譜儀 (Spectrofluorometer, PL) 53 3.4.7 莫特-蕭特基(Mott-Schottky)圖譜分析 54 3.4.8 三電極電化學反應量測系統 55 3.4.9 氣相層析儀(Gas Chromatography, GC) 57 第四章、結果與討論 58 4.1 不同鎳摻雜量所得ZnNiOS/碳材複合纖維光催化劑其特性探討 59 4.1.1 不同鎳摻雜量所得ZN-x複合纖維光催化劑其XRD分析 59 4.1.2 不同鎳摻雜量所得ZN-x複合纖維光催化劑其SEM及EDS分析 62 4.1.3 不同鎳摻雜量所得ZN-x複合纖維光催化劑其DRS及PL分析 64 4.1.4 不同鎳摻雜量所得ZN-x複合纖維光催化劑其電化學阻抗分析 67 4.1.5 不同鎳摻雜量所得ZN-x複合纖維光催化劑其瞬態光電流分析 68 4.1.6 不同鎳摻雜量所得ZN-x複合纖維光催化劑其HER產氫分析 69 4.1.7 最佳產氫效率ZN-2.5複合纖維光催化劑其XPS表面元素組成分析 70 4.1.8 ZN-x複合纖維光催化劑的Mott-Schottky圖譜分析 72 4.1.9 最佳產氫效率ZN-2.5複合纖維光催化劑其TEM表面形貌與元素組成分析 73 4.1.10 最佳產氫效率ZN-2.5複合纖維光催化劑的穩定性和循環伏安法分析 75 4.2 不同錳摻雜量所得Mn-ZnNiOS/碳材複合纖維光催化劑其特性探討 77 4.2.1 不同錳摻雜量所得ZNM-y複合纖維光催化劑其XRD分析 77 4.2.2 不同錳摻雜量所得ZNM-y複合纖維光催化劑其SEM及EDS分析 80 4.2.3 不同錳摻雜量所得ZNM-y複合纖維光催化劑其DRS及PL分析 82 4.2.4 不同錳摻雜量所得ZNM-y複合纖維光催化劑其電化學阻抗分析 86 4.2.5 不同錳摻雜量所得ZNM-y複合纖維光催化劑其HER氫氣產量與產率分析 87 4.2.6 最佳產氫效率ZNM-25複合纖維光催化劑其XPS表面元素組成分析 88 4.2.7 ZNM-y複合纖維光催化劑的Mott-Schottky圖譜分析 90 4.2.8 最佳產氫效率ZNM-25複合纖維光催化劑其TEM表面形貌與元素組成分析 91 4.2.9 最佳產氫效率ZNM-25複合纖維光催化劑其穩定性和循環伏安法分析 93 4.3 光催化劑組成、結構與特性其相互關係之探討 95 第五章、結論 99 參考文獻 100

[1] R. Gray, "人類面臨的最大能源挑戰是什麼?," BBC NEWS 中文, (2017).
[2] CNN Wire, "Final draft of climate deal formally accepted in Paris," WTVR Richmond, (2015).
[3] 林彥谷, "把太陽光轉成化學能:奈米結構捕捉太陽光分解水製氫," 科技大觀園, (2015).
[4] 黃彥禎, 郭瑋汝, 李岱洲, "光觸媒產氫," 材料世界網, (2018).
[5] 林國興, 賴建銘, 張嵩駿, 林俊男, 蔡麗端, "氫能趨勢分析與儲能應用新思維," 材料世界網, (2018).
[6] R. Y. Kannah, S. Kavitha, O. P. Karthikeyan, G. Kumar, N. V. Dai-Viet, J. R. Banu, "Techno-Economic Assessment of Various Hydrogen Production Methods–A review," Bioresource technology, 319 (2021) 124175.
[7] Z. Yue, A. Liu, C. Zhang, J. Huang, M. Zhu, Y. Du, P. Yang, "Noble-Metal-Free Hetero-Structural CdS/Nb2O5/N-Doped-Graphene Ternary Photocatalytic System as Visible-Light-Driven Photocatalyst for Hydrogen Evolution," Applied Catalysis B: Environmental, 201 (2017) 202-210.
[8] Z. Wang, C. Li, K. Domen, "Recent Developments in Heterogeneous Photocatalysts for Solar-Driven Overall Water Splitting," Chem Soc Rev, 48 (2019) 2109-2125.
[9] A. Fujishima, K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238 (1972) 37-38.
[10] S. Bao, H. Liu, H. Liang, C. Li, J. Bai, "Electrospinned Silk-Ribbon-Like Carbon-Doped TiO2 Ultrathin Nanosheets for Enhanced Visible-light Photocatalytic Activity," Colloids and Surfaces A: Physicochemical and Engineering Aspects, 616 (2021) 126289.
[11] D. Lin, H. Wu, R. Zhang, W. Pan, "Enhanced Photocatalysis of Electrospun Ag−ZnO Heterostructured Nanofibers," Chemistry of Materials, 21 (2009) 3479-3484.
[12] X. Liu, C. Bie, B. He, B. Zhu, L. Zhang, B. Cheng, "0D/2D NiS/CdS Nanocomposite Heterojunction Photocatalyst With Enhanced Photocatalytic H2 Evolution Activity," Applied Surface Science, 554 (2021) 149622.
[13] L. Zhang, Q. Shen, F. Huang, L. Jiang, J. Liu, J. Sheng, "Electrospinning Directly Synthesis of 0D/1D CuBi2O4@WO3 Nanofiber Photocatalyst With S-Scheme Heterojunction," Applied Surface Science, 608 (2023) 155064.
[14] X. Wu, W. Zhong, H. Ma, X. Hong, J. Fan, H. Yu, "Ultra-Small Molybdenum Sulfide Nanodot-Coupled Graphitic Carbon Nitride Nanosheets: Trifunctional Ammonium Tetrathiomolybdate-Assisted Synthesis and High Photocatalytic Hydrogen Evolution," Journal of Colloid and Interface Science, 586 (2021) 719-729.
[15] S. Bai, J. Jiang, Q. Zhang, Y. Xiong, "Steering Charge Kinetics in Photocatalysis: Intersection of Materials Syntheses, Characterization Techniques and Theoretical Simulations," Chem Soc Rev, 44 (2015) 2893-93.
[16] Z. Bin, C. Xiaohua, T. Qianxiang, C. Chuansheng, H. Aiping, "Ordered Mesoporous Necklace-Like ZnS on Graphene for Use as a high Performance Photocatalyst," Applied Surface Science, 308 (2014) 321-327.
[17] M. A. Fox, M. T. Dulay, "Heterogeneous Photocatalysis," Chemical Reviews, 93 (1993) 341-357.
[18] A. Kudo, H. Kato, I. Tsuji, "Strategies for the Development of Visible-Light-Driven Photocatalysts for Water Splitting," Chemistry Letters, 33 (2004) 1534-1539.
[19] A. L. Linsebigler, G. Lu, J. T. Yates, Jr., "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results," Chemical Reviews, 95 (1995) 735-758.
[20] A. Staykov, S. M. Lyth, M. Watanabe, "Photocatalytic Water Splitting," in Hydrogen Energy Engineering: A Japanese Perspective, K. Sasaki, H.-W. Li, A. Hayashi, J. Yamabe, T. Ogura, and S. M. Lyth Eds. Tokyo: Springer Japan, (2016) 159-174.
[21] M. Reza Gholipour, C.-T. Dinh, F. Béland, T. O. Do, "Nanocomposite Heterojunctions as Sunlight-Driven Photocatalysts for Hydrogen Production from Water Splitting," Nanoscale, 7 (2015) 8187-208.
[22] J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. Beck Tan, "The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles," Polymer, 42 (2001) 261-272.
[23] Z.-M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, "A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites," Composites Science and Technology, 63 (2003) 2223-2253.
[24] G. I. Taylor, "Disintegration of Water Drops in an Electric Field," 280 (1964).
[25] N. Bhardwaj, S. C. Kundu, "Electrospinning: a Fascinating Fiber Fabrication Technique," Biotechnology advances, 28 (2010) 325-47.
[26] D. H. Reneker, I. Chun, "Nanometre Diameter Fibres of Polymer, Produced by Electrospinning," Nanotechnology, 7 (1996) 216 - 223.
[27] S. N. Reznik, A. L. Yarin, A. Theron, E. Zussman, "Transient and Steady Shapes of Droplets Attached to a Surface in a Strong Electric Field," Journal of Fluid Mechanics, 516 (2004) 349-377.
[28] S. V. Fridrikh, J. H. Yu, M. P. Brenner, G. C. Rutledge, "Controlling the Fiber Diameter During Electrospinning," Physical Eeview Letters, 90 (2003) 144502.
[29] H. Fong, I. Chun, D. H. Reneker, "Beaded Nanofibers Formed During Electrospinning," Polymer, 40 (1999) 4585-4592.
[30] W. T. Kim, D. C. Park, W. H. Yang, C. H. Cho, W. Y. Choi, "Effects of Electrospinning Parameters on the Microstructure of PVP/TiO2 Nanofibers," Nanomaterials (Basel), 11 (2021) nano11061616.
[31] S. Megelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, "Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers," Macromolecules, 35 (2002) 8456-8466.
[32] C. J. Buchko, L. C. Chen, Y. Shen, D. C. Martin, "Processing and Microstructural Characterization of Porous Biocompatible Protein Polymer Thin Films," Polymer, 40 (1999) 7397-7407.
[33] H. M. Chen, C. K. Chen, R.-S. Liu, C.-C. Wu, W.-S. Chang, K.-H. Chen, "A New Approach to Solar Hydrogen Production: a ZnO–ZnS Solid Solution Nanowire Array Photoanode," Advanced Energy Materials, 1 (2011) 742-747.
[34] H. Abdullah, D.-H. Kuo, X. Chen, "High Efficient Noble Metal Free Zn(O,S) Nanoparticles for Hydrogen Evolution," International Journal of Hydrogen Energy, 42 (2017) 5638-5648.
[35] R. D. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides," A32 (2001) 751-767.
[36] N. S. Gultom, H. Abdullah, D.-H. Kuo, "Enhanced Photocatalytic Hydrogen Production of Noble-Metal Free Ni-Doped Zn(O,S) in Ethanol Solution," International Journal of Hydrogen Energy, 42 (2017) 25891-25902.
[37] J. Krýsa, G. Waldner, H. Měšt’ánková, J. Jirkovský, G. Grabner, "Photocatalytic Degradation of Model Organic Pollutants on an Immobilized Particulate TiO2 Layer: Roles of Adsorption Processes and Mechanistic Complexity," Applied Catalysis B: Environmental,64 (2006) 290-301.
[38] H. Han, R. Bai, "Highly Effective Buoyant Photocatalyst Prepared With a Novel Layered-TiO2 Configuration on Polypropylene Fabric and the Degradation Performance for Methyl Orange Dye Under UV–Vis and Vis Lights," Separation and Purification Technology, 73 (2010) 142-150.
[39] H. Abdullah, D.-H. Kuo, J.-Y. Lee, C.-M. Wu, "Recyclability of Thin Nylon Film-Supported p-CuBiS2/n-TiO2 Heterojunction-Based Nanocomposites for Visible Light Photocatalytic Degradation of Organic Dye," Applied Physics A, 122 (2016) 750.
[40] K. Zhou, M. Liu, X. Ye, Y. Zhu, Z. Liu, Y. Yang, Y. Dan, Y. Yuan, H. Hou, "Electrospun Highly Crystalline ZnO Nanofibers: Super‐Efficient and Stable Photocatalytic Hydrogen Production Activity," Chemistryselect, 5 (2020) 6691-6696.
[41] L. Wang, G. Yang, S. Peng, J. Wang, D. Ji, W. Yan, S. Ramakrishna, "Fabrication of MgTiO3 Nanofibers by Electrospinning and Their Photocatalytic Water Splitting Activity," International Journal of Hydrogen Energy, 42 (2017) 25882-25890.
[42] K. Su, X. Liu, T. Zhang, J. Li, F. Luo, C. Yuan, F. Liu, "Effect of Cr and La co-Doping on the Photocatalytic Hydrogen Production Performance of Sr1-xLaxTi1-xCrxO3 Nanofibers," Catalysis Communications, 175 (2023) 106601.
[43] A. M. Al-Enizi, A. Karim, A. Yousef, "A Novel Method for Fabrication of Electrospun Cadmium Sulfide Nanoparticles- Decorated Zinc Oxide Nanofibers as Effective Photocatalyst for Water Photosplitting," Alexandria Engineering Journal, 65 (2023) 825-835.
[44] X. Zhan, H. Zhang, H. Hou, F. Gao, L. Wang, D. Ou, B. Li, L. Xu, W. Yang, "Rationally Designed Ta3N5/ZnO Core-shell Nanofibers for Significantly Boosts Photocatalytic Hydrogen Production," Applied Surface Science, 611 (2023) 155788.
[45] D. Sun, J.-W. Shi, D. Ma, Y. Zou, G. Sun, S. Mao, L. Sun, Y. Cheng, "CdS/ZnS/ZnO Ternary Heterostructure Nanofibers Fabricated by Electrospinning for Excellent Photocatalytic Hydrogen Evolution Without Co-catalyst," Chinese Journal of Catalysis, 41 (2020) 1421-1429.
[46] G. Yang, L. Wang, J. Wang, W. Yan, "Fabrication and Formation Mechanism of Li2MnO3 Ultrathin Porous Nanobelts by Electrospinning," Ceramics International, 43 (2017) 71-76.
[47] H. Abdullah, R. T. Ginting, H. Shuwanto, D.-H. Kuo, "Banana Peel Biowaste-Derived Carbon Composited with Zn(O,S) for Solar-Light Photocatalytic Hydrogen Generation," International Journal of Hydrogen Energy, 47 (2022) 41021-41033.
[48] I. Tateishi, M. Furukawa, H. Katsumata, S. Kaneco, "Improvement of Photocatalytic H2-Generation under Visible Light Irradiation by Controlling the Band Gap of ZnIn2S4 with Cu and In," Catalysts, 9 (2019) 681.
[49] Z. Zhang, C. Shao, X. Li, Y. Sun, M. Zhang, J. Mu, P. Zhang, Z. Guo, Y, Liu, "Hierarchical Assembly of Ultrathin Hexagonal SnS2 Nanosheets onto Electrospun TiO2 Nanofibers: Enhanced Photocatalytic Activity Based on Photoinduced Interfacial Charge Transfer," Nanoscale, 5 (2013) 606-618.
[50] W. Zhao, Y. Jin, C. H. Gao, W. Gu, Z. M. Jin, Y. L. Lei, L.S. Liao, "A Simple Method for Fabricating p–n Junction Photocatalyst CuFe2O4/Bi4Ti3O12 and its Photocatalytic Activity," Materials Chemistry and Physics, 143 (2014) 952-962.

無法下載圖示 全文公開日期 2025/07/24 (校內網路)
全文公開日期 2025/07/24 (校外網路)
全文公開日期 2025/07/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE