簡易檢索 / 詳目顯示

研究生: 廖瑋鈞
Wei-chun Liao
論文名稱: 在合作式解碼前送系統中對正交分頻多工存取作比例式公平資源分配
Resource Allocation with Proportional Fairness in OFDMA-based DF Relay Networks
指導教授: 方文賢
Wen-hsien Fang
口試委員: 賴坤財
none
陳郁堂 
none
鄧俊宏
none
丘建青
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 58
中文關鍵詞: 合作式通訊子載波配置比例式公平
外文關鍵詞: cooperation communication, subcarrier assignment, proportional fairness
相關次數: 點閱:191下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

正交分頻多工存取技術近年來主要應用在無線通信技術上, 而在無線
通信技術中, 合作式通訊可以經由中繼端傳送彼此訊息至目的端形成一個
分散式天線陣列, 進而提供空間多樣性增益。
在本論文中, 我們在正交分頻多工存取技術解碼前送合作式網路系統
中作比例式公平的資源分配。此最佳化問題包含了中繼端選擇、子載波配
置和功率分配。由於其原始問題是一個離散問題, 因此我們將此問題放寬,
並且利用對偶分解方法使之成為對偶問題並求解, 再利用KKT 條件來找
出此問題的次佳解。另外討論中繼端至兩端的子載波配對, 繼而得到更好
的系統效能, 並且藉由其資源分配, 我們考慮了中繼端公平的演算法。
我們所提出的演算法是藉由迭代運算來找出適當的子載波分配, 其運
算複雜度會隨著迭代次數的增加而大幅提升。為了降低此缺點, 所以我們
提出了降低複雜度的方法, 其方法為給予每個使用者最低速率的要求, 因
此需要迭代運算的子載波個數就會大幅減少。相關模擬結果顯示在不同的
限制和各種的情況下, 我們所提出之方法相較於前人的方法, 確實能提供
較低的複雜度且獲得更好的系統效能。


The orthogonal frequency division multiple access (OFDMA) sys-
tems can offer high spectral efficiency and mitigate the problem of
frequency-selective fadings, and have received lots of attention re-
cently. Cooperative networks, meanwhile, can form a distributed
antenna array and provide the spatial diversity gains to enhance the
converge, better performance can be reached by combining their in-
dividual advantages.
In this thesis, we consider resource allocation with proportional
fairness (PF) in the OFDMA-based decode-and-forward (DF) relay
networks. In order to attain the fairness of the relay nodes, we pur-
pose an algorithm which jointly consider relay selection and power
allocation. Because the formulated primal problem is nondetermin-
istic polynomial time-complete, we first make continuous relaxation,
then solve the dual problem by dual decomposition method. The
near optimal solution can then be found by the KKT condition.
Moreover, we also take into consideration the subcarrier matching
between the relay nodes to the source nodes and the relay nodes to
the destination nodes to further enhance the overall performance.
Since the algorithm proposed was iterative, it calls for lots for
computational complexity. To alleviate this setback, we also first
impose each user to have the minimum required data rate before
proceeding the recursive. As such, the computational load can be
substantially mitigated. Simulation results show that the proposed
method provides both higher throughput and better fairness among
relay nodes in comparison with previous algorithms.

第一章緒論1 1.1 引言 1.2 研究動機與目的 1.3 內容章節概述 第二章相關背景回顧 2.1 正交分頻多工存取系統 2.2 合作式通訊系統 2.3 數學工具 2.3.1 分解方法(decomposition method) 2.3.2 原始分解(primal decomposition) 2.3.3 對偶分解(dual decomposition) 2.3.4 KKT條件(Karush-Kuhn-Tucker conditions) 2.4 結語 第三章在合作式解碼前送系統中對正交分頻多工存取作比例式公平 資源分配 3.1 介紹 3.2 現有子載波分配之演算法分析 3.3 在合作式解碼前送系統中對正交分頻多工存取作比例式公 平資源分配 3.3.1 在中繼端系統的正交分頻多工存取 3.3.2 問題陳述 3.3.3 運用對偶分解方法求解 3.3.4 改善複雜度之演算法 3.4 電腦模擬結果與討論 3.5 結語 第四章結論及未來展望 4.1 結論 4.2 未來展望 參考文獻

[1] C. Y. Wong, R. S. Cheng, and K. B. Letaief, “Multiuser OFDM
with adaptive subcarrier, bit, and power allocation,” IEEE J.
Select. Areas Commun., vol. 17, no. 10, Oct. 1999.
[2] Y. B. Lin, T. H. Chiu, and Y. Su, “Optimal and near-optimal
resource allocation algorithms for OFDMA networks,” IEEE
Trans. Wireless Commun., vol. 8, no. 8, pp. 4066-4077, Aug.
2009.
[3] T. S. Rappaport, Wireless Communications Principles and
Practice. 2nd ed., 2002.
[4] R. Pabst, B. H. Walke, D. C. Schultz, P. Herhold, H.
Yanikomeroglu, S. Mukherjee, H. Viswanathan, M. Lott, W.
Zirwas, M. Dohler, H. Aghvami, D. D. Falconer, and G. P. Fet-
tweis, “Relay-based deployment concepts for wireless and mobile
broadband radio,” IEEE Commun. Mag., vol. 42, no. 9, pp. 80-
89, Sep. 2004.
[5] K. J. R. Liu, A. K. Sadek, W. Su, and A. Kwasinski, Cooperative
Communications and Networking. Cambridge University Press,
2009.
[6] J. Luo, R. S. Blum, L. J. Cimini, L. J. Greenstein, and A.
M. Haimovich, “Decode-and-forward cooperative diversity with
power allocation in wireless networks,” IEEE Trans. Wireless
Commun., vol. 6, no. 3, pp. 793-799, Mr. 2007.
[7] H. Mu, M. Tao, W. Dang, Y. Xiao, “Joint subcarrier-relay as-
signment and power allocation for decode-and-forward multi-
relay OFDM systems,” in Proc. IEEE Wireless Commun. and
Networking Conference, pp. 1-6, 2009.
[8] L. Vandendorpe, J. Louveaux, O. Oguz, and A. Zaidi, “Power
allocation for improved DF relayed OFDM transmission: The
individual power constraint case,” in Proc. IEEE International
Conference on Commun., pp. 1-6, 2009.
[9] Z. Tang and G.Wei, “Resource allocation with fairness consider-
ation in OFDMA-based relay networks,” in Proc. IEEE Wireless
Commun. and Networking Conference, pp. 1-5, 2009.
[10] Z.Tang, Y. Zhu, G.Wei, and J. Zhu, “An OFDMA-based subcar-
rier and power allocation scheme in wireless cooperative cellular
system,” Wireless Pers Commun., May 2009.
[11] W. Wang and R. Wu, “Capacity maximization for OFDM two-
hop relay system with separate power constraints,” IEEE Trans.
Vehicular Technology, vol. 58, no. 9, pp. 4943-4954, Nov. 2009.
[12] R. Hoshyar, M. Shariat, and R. Tafazolli, “Subcarrier and power
allocation with multiple power constraints in OFDMA systems,”
IEEE Commun. Lett., vol. 14, no. 7, pp. 644-646, July 2010.
[13] T. Jie, K. Cumanan, and S. Lambotharan, “Sum-rate maxi-
mization technique for spectrum-sharing mimo OFDM broad-
cast channels,” IEEE Trans. Vehicular Technology, vol. 60, no.
4, pp. 1960-1964, May 2011.
[14] H. Kim and Y. Han, “A proportional fair scheduling for multi-
carrier transmission systems,” IEEE Commun. Lett., vol. 9, no.
3, pp. 210-212, March 2005.
[15] T. D. Nguyen and Y. Han, “A proportional fairness algorithm
with QoS provision in downlink OFDMA systems,” IEEE Commun.
Lett., vol. 10, no. 11, pp. 760-762, Nov. 2006.
[16] B. Fan, W. Wang, Y. Lin, and K. Zheng, “Proportional fair
based subcarrier allocation for OFDMA system with DF relay,”
IEICE Trans. Commun., vol. E93-B, no. 1, pp. 187-191, Jan.
2010.
[17] C. Liu, X. Qin, S. Zhang, and W. Zhou, “Proportional-fair
downlink resource allocation in OFDMA-based relay networks,”
IEEE J. Commun. and Networking, vol. 13, no. 6, pp. 633-638,
Dec. 2011.
[18] J. G.Proakis and M. Salehi, Digital Communications. 5th ed.,
McGraw-Hill, 2008.
[19] A. Nosratinia, T. E. Hunter, and A. Hedayat, “Cooperative com-
munication in wireless networks,” IEEE Commun. Mag., vol. 42,
no. 10, pp. 74-80, Oct. 2004.
[20] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies
and capacity theorems for relay networks,” IEEE Trans. Inform.
Theory, vol. 51, no. 9, pp. 3037- 3063, Sept. 2005.
[21] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation
diversity. Part I: System description,” IEEE Trans. Commun.,
vol. 51, no. 11, pp. 1927- 1938, Nov. 2003.
[22] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation di-
versity. Part II: Implementation aspects and performance anal-
ysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939- 1948,
Nov. 2003.
[23] M. Herdin, “A chunk based OFDM amplify-and-forward relay-
ing scheme for 4g mobile radio systems,” in Proc. IEEE International
Conference on Commun., pp. 4507-4512, 2006.
[24] C. N. Hsu, H. J. Su, and P. H. Lin, “Joint subcarrier pairing
and power allocation for OFDM transmission with decode-and-
forward relaying,” IEEE Trans. Signal Process., vol. 59, no. 1,
pp. 399-414, Jan. 2011.
[25] Y. Wang, X. C. Qu, T. Wu and B. L. Liu, “Power allocation
and subcarrier pairing algorithm for regenerative OFDM relay
system,” in Proc. IEEE Vehicular Technology Conf., pp. 2727-
2731, 2007.
[26] D. P. Palomar and M. Chiang, “A tutorial on decomposition
methods for network utility maximization,” IEEE J. Select. Areas
Commun., vol. 24, no. 8, pp. 1439-1451, Aug. 2006.
[27] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2007.
[28] G. Li and H. Liu, “Resource allocation for OFDMA relay net-
works with fairness constraints,” IEEE J. Select. Areas Commun.
, vol. 24, no. 11, pp. 2061-2069, Nov. 2006.
[29] H. Li, H. Luo, X. Wang, and C. Li, “Throughput maximization
for OFDMA cooperative relaying networks with fair subchannel
allocation,” in Proc. IEEE Wireless Commun. and Networking
Conference, pp. 1-6, 2009.
[30] A. A. Salah, R. S. A. Abdullah, B. B. M. Ali, and N. A. Odeh,
“A Low complexity resource allocation algorithm for OFDMA
cooperative relay networks with fairness and QoS guaranteed,”
IEICE Trans. Commun., vol. E94-B, no. 8, pp. 2328-2337, Aug.
2011.
[31] Y. Li, W. Wang, J. Kong, W. Hong, X. Zhang, and M. Peng,
“Power allocation and subcarrier pairing in OFDM-based re-
laying networks,” in Proc. IEEE International Conference on
Commun., pp. 2602-2606, 2008.
[32] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative
diversity in wireless networks: Efficient protocols and outage
behavior,” IEEE Trans. Inform. Theory, vol. 50, no. 12, pp.
3062- 3080, Dec. 2004.
[33] S. Boyd, L. Xiao, and A. Mutapcic, Subgradient Methods. Stan-
ford University Press, 2003.
[34] R. Jain W. Have, and D. Chiu, “A quantitative measure of fair-
ness and discrimination for resource allocation in shared com-
puter systems,” Digital Equipment Corporation Research Report
, TR-301, Sep. 1984.

QR CODE