簡易檢索 / 詳目顯示

研究生: 許哲瑋
Che-wei Hsu
論文名稱: 表現Vitreoscilla hemoglobin在Yarrowia lipolytica Po1g對於其生長速率與脂質產量之影響
Effects of expressing Vitreoscilla hemoglobin in Yarrowia lipolytica Po1g on enhancing its growth rate and lipid production
指導教授: 朱義旭
Yi-hsu Ju
口試委員: Suryadi Ismadji
Suryadi Ismadji
Truong Chi Thanh
Truong Chi Thanh
吳誌明
Jyh-ming Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 65
中文關鍵詞: 耶氏解脂酵母透明顫菌血紅蛋白hp4d啟動子
外文關鍵詞: Yarrowia lipolytica, Vitreoscilla hemoglobin, hp4d promoter
相關次數: 點閱:210下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

生質柴油發展到現在已經是一個重要的替代能源。從油脂微生物獲取油脂被視為是一個非常具有潛力的生質柴油來源。Yarrowia lipolytica是一種相當好氧的油脂酵母。為解決發酵時缺氧的缺陷,藉由Vitreoscilla hemoglobin (VHb)提升氧氣的傳遞來增加微生物的呼吸與能量代謝。在本研究中,我們使用hp4d啟動子表現VHb在Yarrowia lipolytica中以探討Vitreoscilla hemoglobin (VHb)對Yarrowia lipolytica生長與脂質含量的影響。結果指出藉由利用hp4d啟動子,蛋白質在靜止期初期被生產出來。雖然VHb被表現在Yarrowia lipolytica中,但細胞在低養分的情況下無法繼續增長。因此在低溶氧與高溶氧下,表現VHb並未提升Yarrowia lipolytica的生長速率。油脂產率在控制組為 8.667 g/l,而在VHb表現下產率為 9.410 g/l。表現VHb也許會幫助油脂的累積。然而,這些許的增加在統計上不重要。


Biodiesel has become an important alternative energy source. Recently, microbial oil from oleaginous microorganism is considered as a potential candidate for biodiesel production. Yarrowia lipolytica is a strictly aerobic oleaginous yeast. To solve the defects of hypoxic conditions, Vitreoscilla hemoglobin (VHb) has been used to enhance respiration and energy metabolism by promoting oxygen delivery. In this study, hp4d promoter was used for expressing VHb protein in Y. lipolytica. The effect of VHb protein on growth rate and lipid production of Y. lipolytica was investigated. The result indicates that protein was produced at the beginning of stationary stage by using hp4d promoter. Although VHb protein was produced at stationary stage, cells were not able to grow at low nutrients. Therefore, growth rate of Y. lipolytica was not enhanced by expressing VHb protein under low-oxygen and high-oxygen level. Lipid yield was 8.667 g/l for VHb- strain and 9.410 g/l for VHb+ strain. The expression of VHb protein may help lipid accumulation. However, the increase is not statistically important.

中文摘要............................................................................................................................ I Abstract .............................................................................................................................II Acknowledgement .......................................................................................................... III Contents .......................................................................................................................... IV List of Figures .............................................................................................................. VIII List of Tables .................................................................................................................. IX Chapter 1........................................................................................................................... 1 Introduction....................................................................................................................... 1 1.1 Background................................................................................................................. 1 1.2 Objects of this study.................................................................................................... 2 Chapter 2........................................................................................................................... 3 Literature review............................................................................................................... 3 2.1 Oleaginous microorganisms........................................................................................ 3 2.1.1 Introduction .......................................................................................................... 3 2.1.2 Oil content of some oleaginous microorganisms ................................................. 3 2.1.3 Lipids from oleaginous yeasts.............................................................................. 4 2.1.4 Yarrowia lipolytica............................................................................................... 5 2.1.4.1 Introduction ................................................................................................... 5 2.1.4.2 Yarrowia lipolytica Po1g strain ................................................................... 6 2.2 Genetic manipulation for Yarrowia lipolytica ............................................................ 6 2.2.1 Introduction ........................................................................................................ 6 2.2.2 Hp4d promoter ................................................................................................... 9 2.2.3 pYLEX1 vector ................................................................................................ 10 2.3 Vitreoscilla hemoglobin............................................................................................ 11 2.3.1 Introduction ...................................................................................................... 11 2.3.2 Function of VHb ............................................................................................... 12 2.3.3 Application of VHb .......................................................................................... 15 Chapter 3......................................................................................................................... 17 Methodology................................................................................................................... 17 3.1 Experimental materials ............................................................................................. 17 3.1.1 Chemicals ......................................................................................................... 17 3.1.2 Kits ................................................................................................................... 17 3.1.3 Enzyme ............................................................................................................. 17 3.1.4 Microorganism ................................................................................................. 17 3.1.5 Plasmid ............................................................................................................. 18 3.1.6 Primer ............................................................................................................... 18 3.2 Culture medium and reagent..................................................................................... 18 3.2.1 Culture medium ................................................................................................ 18 3.2.1.1 LB medium + ampicillin ........................................................................... 18 3.2.1.2 YPD medium ............................................................................................. 18 3.2.1.3 YPD medium pH4 ....................................................................................... 19 3.2.1.4 YNB medium ............................................................................................. 19 3.2.2 Reagent ............................................................................................................. 19 3.2.2.1 DNA reagent .............................................................................................. 19 3.2.2.2 Transformation of bacterial cell reagent .................................................... 19 3.2.2.3 SDS-PAGE ................................................................................................ 19 3.2.2.4 Western blot reagent .................................................................................. 19 3.3 Apparatus and equipments........................................................................................ 20 3.4 Conceptual framework of methodology ................................................................... 20 3.5 Genetic manipulation................................................................................................ 24 3.5.1 Plasmid extraction ............................................................................................ 24 3.5.2 Polymerase Chain Reaction (PCR) ................................................................ 25 3.5.3 PCR product purification ................................................................................. 25 3.5.4 Agarose gel electrophoresis .............................................................................. 26 3.5.5 Restriction enzyme digestion ........................................................................... 27 3.5.6 Gel extraction ................................................................................................... 28 3.5.7 Formation of recombinant DNA molecule (ligation)......................................... 29 3.5.8 Preparation of E. coli competent cell ............................................................... 29 3.5.9 Transformation of E. coli Top10 by heat shock ............................................... 30 3.5.10 Colony PCR of E. coli .................................................................................... 30 3.5.11 Colony PCR confirmation using agarose gel electrophoresis ........................ 31 3.5.12 Linearization of plasmid ................................................................................. 31 3.5.13 Preparation of Yarrowia lipolytica competent cell ......................................... 32 3.5.14 Transformation of Yarrowia lipolytica by heat shock .................................... 32 3.5.15 Colony PCR of Yarrowia lipolytica ............................................................... 33 3.6 VHb expression confirmation................................................................................... 34 3.6.1 Release of VHb protein .................................................................................... 34 3.6.2 SDS-PAGE ....................................................................................................... 34 3.6.3 Western Blot ..................................................................................................... 36 3.7 Fermentation ............................................................................................................. 37 3.7.1 Inoculum ........................................................................................................... 37 3.7.2 Microbial fermentation ..................................................................................... 37 3.8 Lipid analysis ............................................................................................................ 38 3.8.1 Soxhlet extraction ............................................................................................. 38 3.9 Total reducing sugar ................................................................................................. 38 Chapter 4......................................................................................................................... 39 Results and Discussion ................................................................................................... 39 4.1 Construction of pYVHb vector................................................................................. 39 4.2 Y. lipoylitica transformation...................................................................................... 40 4.3 VHb protein expression in Y. lipoylitica................................................................... 41 4.3.1 SDS-PAGE ....................................................................................................... 41 4.3.2 Western Blot ..................................................................................................... 42 4.4 Effect of VHb protein ............................................................................................... 44 4.4.1 Growth rate......................................................................................................... 44 4.4.2 Lipid content ...................................................................................................... 47 Chapter 5......................................................................................................................... 48 Conclusion and Future projects ...................................................................................... 48 References....................................................................................................................... 49 List of Figures Figure 2.1 The gene map of pYLEX1 ............................................................................ 10 Figure 2.2 Structure of VHb homodimer........................................................................ 11 Figure 2.3 Proposed mechanism of the interaction between and subunit I of cytochrome bo ubiquinol oxidases.................................................................................. 14 Figure 2.4 Applications of VHb protein ......................................................................... 16 Figure 3.1 Conceptual framework of this study.............................................................. 21 Figure 3.2 Conceptual framework of genetic manipulation ........................................... 22 Figure 3.3 pYVHB construction........................................................................................ 23 Figure 4.1 The DNA electrophoresis image of gel purification ..................................... 39 Figure 4.2 Transformation of E. coli Top10. (a) Control (pYLEX1+dd-H2O), (b) Recombinant DNA(pYLEX1+vgb gene) ....................................................................... 40 Figure 4.3 The DNA electrophoresis image of E. coli colony PCR. .............................. 41 Figure 4.4 DNA electrophoresis image of yeast colony PCR ........................................ 42 Figure 4.5 (a) SDS-PAGE, (b) Western Blot.................................................................. 43 Figure 4.6 Comparison of growth profiles between VHb+ and VHb- strain under low-oxygen level in rich YPD medium. ......................................................................... 45 Figure 4.7 Comparison of growth profiles between VHb+ and VHb- strain under high-oxygen level in rich YPD medium. ........................................................................ 46 Figure 4.8 Western Blot analyses of VHb protein sample at different glucose concentration. The same amounts of cells were used to release VHb protein................ 46 Figure 4.9 Dry cell weight and lipid content in different strains. Number 1: pYLEX1 (VHb-). Number 2: pYVHb (VHb+) .............................................................................. 47 List of Tables Table 2.1:Oil content of some microorgansms ................................................................. 4 Table 2.2: Components for Y. lipolytica expression/secretion vectors............................. 7 Table 2.3: Heterologous protein expression/secretion in Y. lipolytica ............................. 9 Table 2.4: Kinetic constants for reactions of various hemoglobins with oxygen........... 12 Table 4.1: Comparison between this study and literature............................................... 45 Table 4.2: The fraction of solvent extraction.................................................................. 47

Agarwal, A. K. (2007). Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science, 33(3), 233-271. doi: DOI 10.1016/j.pecs.2006.08.003
Aggelis, G., Athanassopoulos, N., Paliogianni, A., & Komaitis, M. (1998). Effect of a Teucrium polium L. extract on the growth and fatty acid composition of Saccharomyces cerevisiae and Yarrowia lipolytica. Antonie Van Leeuwenhoek, 73(2), 195-198.
Allocatelli, C. T., Cutruzzola, F., Brancaccio, A., Vallone, B., and Brunori, M. (1994). Engineering Ascaris hemoglobin oxygen-affinity in sperm whale myoglobin: Role of tyrosine B10. FEBS Lett. 352, 63–66.
Barth, G., & Gaillardin, C. (1997). Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev, 19(4), 219-237.
Barnett, J. A., Payne, R. W., Yarrow. D. (1990). Yeasts: Characteristics and identification. Cambridge, UK: Cambridge University Press.
Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J. L., Molina-Jouve, C., & Nicaud, J. M. (2009). Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res, 48(6), 375-387. doi: 10.1016/j.plipres.2009.08.005
Bhave, S. L., & Chattoo, B. B. (2003). Expression of vitreoscilla hemoglobin improves growth and levels of extracellular enzyme in Yarrowia lipolytica. Biotechnol Bioeng, 84(6), 658-666. doi: 10.1002/bit.10817
Bogusz, D., Appleby, C. A., Landsmann, J., Dennis, E. S., Trinick, M. J., & Peacock, W. J. (1988). Functioning haemoglobin genes in non-nodulating plants. Nature, 331(6152), 178-180. doi: 10.1038/331178a0
Chen, D. C., Beckerich, J. M., & Gaillardin, C. (1997). One-step transformation of the dimorphic yeast Yarrowia lipolytica. Appl Microbiol Biotechnol, 48(2), 232-235.
Cordero Otero, R., & Gaillardin, C. (1996). Efficient selection of hygromycin-B-resistant Yarrowia lipolytica transformants. Appl Microbiol Biotechnol, 46(2), 143-148.
Davidow, L.S., Franke, A.E., De Zeeuw, J.R., (1987). New Yarrowia lipolytica transformants used for expression and secretion of heterologous proteins, especially prorennin and human anaphylatoxin C5a. European Patent Application EP86307839.
Dominguez, A., Ferminan, E., Sanchez, M., Gonzalez, F.J., Perez-Campo, F.M., Garcia, S., Herrero, A.B., San Vicente, A., Cabello, J., Prado, M., Iglesias, F.J., Choupina, A., Burguillo, F.J., Fernandez-Lago, L., Lopez, M.C., (1998). Non-conventional yeasts as hosts for heterologous protein production. Int. Microbiol. 1, 131–142.
Dikshit, K. L., & Webster, D. A. (1988). Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli. Gene, 70(2), 377-386.
Easterling, E. R., French, W. T., Hernandez, R., & Licha, M. (2009). The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour Technol, 100(1), 356-361. doi: 10.1016/j.biortech.2008.05.030
Fontanille, P., Kumar, V., Christophe, G., Nouaille, R., & Larroche, C. (2012). Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour Technol, 114, 443-449. doi: 10.1016/j.biortech.2012.02.091
Frey, A.D., Kallio P.T., (2005). Nitric oxide detoxification – A new era for bacterial globins in biotechnology TRENDS in Biotech. 23 (2), 69 – 73.
Gaillardin, C., & Ribet, A. M. (1987). LEU2 directed expression of beta-galactosidase activity and phleomycin resistance in Yarrowia lipolytica. Curr Genet, 11(5), 369-375..
Gellissen, G., Kunze, G., Gaillardin, C., Cregg, J. M., Berardi, E., Veenhuis, M., & van der Klei, I. (2005). New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison. FEMS Yeast Res, 5(11), 1079-1096. doi: 10.1016/j.femsyr.2005.06.004
Gibson, Q. H., Wittenberg, J. B., Wittenberg, B. A., Bogusz, D., and Appleby, C. A. (1989). The kinetics of ligand binding to plant hemoglobins: Structural implications. J. Biol. Chem. 264, 100–107.
Hamsa, P. V., Kachroo, P., & Chattoo, B. B. (1998). Production and secretion of biologically active human epidermal growth factor in Yarrowia lipolytica. Curr Genet, 33(3), 231-237.
Hart, R.A., Kallio, P.T., Bailey, J.E., (1994). Effect of Biosynthesis Manipulation of Heme on Insolubility of Vitreoscilla Hemoglobin in Escherichia coli. Appl. Environ. Microbiol. 60 (7), 2431 – 2437.
Hass, M.J, Foglia, T.A. (2005). Alternative feedstocks and technologies for biodiesel production. in: The Biodiesel Handbook, (Eds.) G. Knothe, J. Krahl, J.H. Van Jerpen, Vol. I11 AOCS Press. Champaign, pp.42-61.
Ingledew, W. J., & Poole, R. K. (1984). The respiratory chains of Escherichia coli. Microbiol Rev, 48(3), 222-271.
Juretzek, T., Wang, H. J., Nicaud, J. M., Mauersberger, S., Barth, G., (2000). Comparison of promoters suitable for regulated overexpression of β-galactosidase in the alkane-utilizing yeast Yarrowia lipolytica. Biotechnol. Bioprocess. Eng. 5, 320–326.
Kallio, P. T., Kim, D.J., Tsai, P.S., Bailey, J.E., (1994). Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions. Eur. J. Biochem. 219, 201 – 208.
Kennedy, E. P. (1956). The biological synthesis of phospholipids. Can J Biochem Physiol, 34(2), 334-348
Khosla, C., & Bailey, J. E. (1988a). Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature, 331(6157), 633-635. doi: 10.1038/331633a0
Khosla, C., & Bailey, J. E. (1988b). The Vitreoscilla hemoglobin gene: molecular cloning, nucleotide sequence and genetic expression in Escherichia coli. Mol Gen Genet, 214(1), 158-161.
Khosla, C., & Bailey, J. E. (1989a). Characterization of the oxygen-dependent promoter of the Vitreoscilla hemoglobin gene in Escherichia coli. J Bacteriol, 171(11), 5995-6004.
Khosla, C., & Bailey, J. E. (1989b). Evidence for partial export of Vitreoscilla hemoglobin into the periplasmic space in Escherichia coli. Implications for protein function. J Mol Biol, 210(1), 79-89.
Khosla, C., Curtis, J. E., DeModena, J., Rinas, U., & Bailey, J. E. (1990). Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Biotechnology (N Y), 8(9), 849-853.
Konz, J. O., King, J., & Cooney, C. L. (1998). Effects of oxygen on recombinant protein expression. Biotechnol Prog, 14(3), 393-409. doi: 10.1021/bp980021l
Madzak, C., Gaillardin, C., & Beckerich, J. M. (2004). Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol, 109(1-2), 63-81. doi: 10.1016/j.jbiotec.2003.10.027
Madzak, C., Treton, B., & Blanchin-Roland, S. (2000). Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol, 2(2), 207-216.
Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., Xian, M. (2009). Biodiesel production form oleaginous microorganism. Renew Energ, 34(1), 1-5.
Muller, S., Sandal, T., Kamp-Hansen, P., Dalboge, H., (1998). Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Kluyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14, 1267–1283.
Nicaud, J. M., Madzak, C., van den Broek, P., Gysler, C., Duboc, P., Niederberger, P., & Gaillardin, C. (2002). Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res, 2(3), 371-379.
Park, K.W., Kim, K.J., Howard, A.J., Stark, B.C., (2002). Vitreoscilla Hemoglobin binds to Subunit I Cytochromoe bo Ubiquinol Oxidases. J. Bio. Chem. 277 (36), 33334 – 33337.
Orii, Y., & Webster, D. A. (1986). Photodissociation of oxygenated cytochrome o(s) (Vitreoscilla) and kinetic studies of reassociation. J Biol Chem, 261(8), 3544-3547.
Papanikolaou, S., Sarantou, S., Komaitis, M., & Aggelis, G. (2004). Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. J Appl Microbiol, 97(4), 867-875. doi: 10.1111/j.1365-2672.2004.02376.x
Park, C. S., Chang, C. C., Kim, J. Y., Ogrydziak, D. M., & Ryu, D. D. (1997). Expression, secretion, and processing of rice alpha-amylase in the yeast Yarrowia lipolytica. J Biol Chem, 272(11), 6876-6881.
Patel, S. M., Stark, B. C., Hwang, K. W., Dikshit, K. L., and Webster, D. A. (2000). Cloning and expression of Vitreoscilla hemoglobin gene in Burkholderia sp strain DNT for enhancement of 2,4-dinitrotoluene degradation. Biotechnol. Prog. 16, 26–30
Ramandeep, Hwang, K.W., Raje, M., Kim, K.J., Stark, B.C., Dikhsit, K.L., Webster, D.A., (2001). Vitreoscilla Hemoglobin – Intracellular localization and binding to membrane, J. Bio. Chem. 276 (27), 24781 – 24789.
Rao, A., Pimprikar, P., Bendigiri, C., Kumar, A. R., & Zinjarde, S. (2011). Cloning and expression of a tyrosinase from Aspergillus oryzae in Yarrowia lipolytica: application in L-DOPA biotransformation. Appl Microbiol Biotechnol, 92(5), 951-959. doi: 10.1007/s00253-011-3400-6
Richard, M., Quijano, R. R., Bezzate, S., Bordon-Pallier, F., & Gaillardin, C. (2001). Tagging morphogenetic genes by insertional mutagenesis in the yeast Yarrowia lipolytica. J Bacteriol, 183(10), 3098-3107. doi: 10.1128/JB.183.10.3098-3107.2001
Rodriguez, C., Domingues, A. (1984). The growth characteristics of Saccharomycopsis lipolytica: morphology and induction of mycelium formation. Can J Microbiol. 30(5), 605-612.
Russo, D., Dassisti, M., Lawlor, V., & Olabi, A. G. (2012). State of the art of biofuels from pure plant oil. Renewable & Sustainable Energy Reviews, 16(6), 4056-4070. doi: DOI 10.1016/j.rser.2012.02.024
Swennen, D., Paul, M. F., Vernis, L., Beckerich, J. M., Fournier, A., & Gaillardin, C. (2002). Secretion of active anti-Ras single-chain Fv antibody by the yeasts Yarrowia lipolytica and Kluyveromyces lactis. Microbiology, 148(Pt 1), 41-50.
Tabakov, V. Y., Emelyanova, L. K., Antonova, S. V., and Voeikova, A. (2001). Effect of the bacterial hemoglobin vhb gene on the efficiency of intergeneric conjugation Escherichia coli: Streptomyces and biosynthesis of antibiotics in Streptomyces. Russian Journal of Genetics 37, 332–334.
Tai, M., & Stephanopoulos, G. (2013). Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng, 15, 1-9. doi: 10.1016/j.ymben.2012.08.007
Tarricone, C., Galizzi, A., Coda, A., Ascenzi, P., & Bolognesi, M. (1997). Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp. Structure, 5(4), 497-507.
Trevaskis, B., Watts, R. A., Andersson, C. R., Llewellyn, D. J., Hargrove, M. S., Olson, J. S., . . . Peacock, W. J. (1997). Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc Natl Acad Sci U S A, 94(22), 12230-12234.
Tsai, P.S., Nageli, M., Bailey, J.E., (1996). Intracellular Expression of Vitreoscilla Hemoglobin Modifies Microaerobic Escherichia coli Metabolism Through Elevated Concentration and Specific Activity of Cytochrome o. Biotechnol. Bioeng. 49, 151 – 160.
Urgun-Demirtas, M., Stark, B., and Pagilla, K. (2006). Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Crit. Rev. Biotechnol. 26, 145–164.
van der Walt, J. P., von Arx, J. A. (1980). The yeast genus Yarrowia gen. nov. Antonie Van Leeuwenhoek 46:517–521.
Wakabayashi, S., Matsubara, H., & Webster, D. A. (1986). Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature, 322(6078), 481-483. doi: 10.1038/322481a0
Zhang, L., Li, Y., Wang, Z., Xia, Y., Chen, W., & Tang, K. (2007). Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol Adv, 25(2), 123-136. doi: 10.1016/j.biotechadv.2006.11.001
Zhang, W., Cutruzzola, F., Allocatelli, C. T., Brunori, M., & La Mar, G. N. (1997). A myoglobin mutant designed to mimic the oxygen-avid Ascaris suum hemoglobin: elucidation of the distal hydrogen bonding network by solution NMR. Biophys J, 73(2), 1019-1030. doi: 10.1016/S0006-3495(97)78135-9
Zhu, L. Y., Zong, M. H., & Wu, H. (2008). Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol, 99(16), 7881-7885. doi: 10.1016/j.biortech.2008.02.033

QR CODE