簡易檢索 / 詳目顯示

研究生: 謝琦力
Giri - Nugroho
論文名稱: 渦漩引致結構振動之沉浸邊界法數值模擬
Direct-forcing immersed boundary modeling of vortex-induced vibration of structures at moderate Reynolds numbers
指導教授: 陳明志
Ming-Jyh Chern
口試委員: 洪子倫
Tzyy-Leng Horng
林怡均
Yi-Jiun Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 51
中文關鍵詞: 沉浸邊界法直接力量渦漩引致振動氣彈力學鎖相放大
外文關鍵詞: Immersed boundary method, direct-forcing, vortex-induced vibration, aeroelastics, lock-in
相關次數: 點閱:362下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 渦漩引致振動為一實際之工程問題,例如航太工程中的機翼飛行時之振動。當一結構物在流場
    中與流體交互中用時,流體作用於結構物上的作用力會造成結構的振動,更進一步當此所鎖相
    放大的情形發生時更可能造成結構物的毀損。因此本研究嘗試建立一沉浸邊界法來模擬一圓柱
    體在一均勻流場中所產生的渦漩引致振動現象。在所建立的數值模式中,此一圓柱受力後可在
    流動平行方向與垂直方向運動。在本研究中主要探討入流速度的變化對渦漩引致振動的效應,
    所預測之圓柱所受之氣動力係數在時域與頻域中呈現。在鎖相放大的遲滯驟升取線區可發現圓
    柱的升阻力係數的極大值,而此時之振動頻率與圓柱自然頻率之比是處於接近一之軟性鎖相放
    大。此外,一般稱為2S的渦漩逸放現象可在圓柱處於低頻振動時被發現,而當振動振幅變大時
    可觀察到被稱為C(2S)模態。本數值模式經與他人之數值與實驗結果相比有良好之一致性,故本
    數值模式可用來做研究渦漩引致振動之有效工具


    Vortex-induced vibration (VIV) of structures is one of the practical interests in various engineering studies such as wind engineering, ocean engineering, aerospace engineering, and so on. When a structure is exposed to a flow field, the resultant hydrodynamic force may cause the vibrations of the structures. Furthermore, this vibration phenomenon may cause the failure of the structure especially for the so-called lock-in situation. In this present study, VIV of a circular cylinder placed in a uniform fluid flow at moderate Reynolds number is simulated using the direct-forcing immersed boundary method. The cylinder is allowed to vibrate in transverse direction and both in the in-line and transverse directions. The effect of reduced velocity on VIV is discussed in this study. Aerodynamic coefficients of a freely vibrating cylinder are analyzed in time and spectral domains. The maximums of the lift coefficient and the mean drag coefficient show hysteresis jumps at low end of the lock-in region. Hysteresis in the response of the cylinder is observed at the low end of the synchronization region. The ratio between the vortex shedding frequency and the natural frequency of the structure experiences the so-called soft lock-in. Moreover, the 2S vortex shedding mode can be found at low amplitudes of vibrations of the cylinder. The C(2S) mode is observed when the oscillation amplitude is large. Good agreements of the results with the previous experimental and numerical data prove the capability of the present method. This established model can be useful for the investigation of VIV of the structures.

    Chinese Abstract Abstract Acknowledgements Contents Nomenclatures List of Tables List of Figures 1 INTRODUCTION 2 MATHEMATICAL FORMULAE AND NUMERICAL METHOD 2.1 Governing equations for fluid flow 2.2 Equations of motion for rigid body 2.3 Immersed boundary method for VIV 2.4 Grid generation and computational time 2.5 Validation of in-house numerical code 3 RESULTS AND DISCUSSION 3.1 Transverse vibrations 3.1.1 Flow patterns and modes of vortex shedding 3.1.2 Influence of reduced velocity on the cylinder response 3.2 In-line and transverse vibrations 3.2.1 Flow patterns and modes of vortex shedding 3.2.2 Influence of reduced velocity on the cylinder response 4 CONCLUSIONS AND FUTURE WORK 4.1 Conclusions 4.2 Future Work BIBLIOGRAPHY CURRICULUM VITAE

    Anagnostopoulos, P., Bearman, P.W., 1992. Response characteristic of a vortex-excited cylinder at low Reynolds numbers. Journal of Fluids and Structures 6, 39-50.
    Bearman, P.W., 1984. Vortex shedding from oscillating bluff bodies. Annual Review of Fluid Mechanics 16, 195-222.
    Bearman, P.W., 2011. Circular cylinder wakes and vortex-induced vibrations. Journal of Fluids and Structures 27, 648-658.
    Blevins, R.D., Coughran, C.S., 2009. Experimental investigation of vortex-induced vibration in one and two dimensions with variable mass, damping, and Reynolds number. Journal of Fluids Engineering 131, 101202.
    Brika, D., Laneville, A., 1993. Vortex-induced vibrations of a long flexible circular cylinder. Journal of Fluid Mechanics 250, 481-508.
    Borthwick, A.G.L., 1986. Comparison between two finite difference schemes for computing the flow around a cylinder. International Journal for Numerical Methods in Fluids 6, 275-290.
    Chern, M.J., Borthwick, A.G.L., Eatock Taylor, R., 2005. Pseudospectral element model for free surface viscous flows. International Journal of Numerical Methods for Heat and Fluid Flow 15, 517-554.
    Coutanceau, M., Bouard, R., 1977. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform. Journal of Fluid Mechanics 79, 231-256.
    Dahl, J.M., Hover, F.S., Triantafyllou, M.S., Oakley, O.H., 2010. Dual resonance in vortexinduced vibrations at subcritical and supercritical Reynolds numbers. Journal of Fluid Mechanics 643, 395-424.
    Dennis, S.C.R., Chang, G.Z., 1970. Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100. Journal of Fluid Mechanics 42, 471-489.
    Feng, C.C., 1968. The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders. Master thesis, University of British Columbia, Vancouver, Canada.
    Hirt, C., Nickols, B., Romero, N., 1975. A numerical solution algorithm for transient fluid. LA-5852. Los Alamos Scientific Laboratory, Los Alamos, New Mexico, USA.
    Ilinca, F., Hetu, J.F., 2012. Numerical simulation of fluid-solid interaction using an immersed boundary finite element method. Computers & Fluids 59, 31-43.
    Khalak, A., Williamson, C.H.K., 1996. Dynamics of a hydroelastic cylinder with very low mass and damping. Journal of Fluids and Structures 10, 455-472.
    Khalak, A., Williamson, C.H.K., 1997a. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping. Journal of Fluids and Structures 11, 973-982.
    Khalak, A., Williamson, C.H.K., 1997b. Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics 71, 341-350.
    Khalak, A., Williamson, C.H.K., 1999. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. Journal of Fluids and Structures 13, 813-851.
    Lee, J., Kim, J., Choi, H., Yang, K.S., 2011. Sources of spurious force oscillations from an immersed boundary method for moving-body problems. Journal of Computational Physics 230, 2677-2695.
    Leonard, B.P., 1979. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering 19, 59-98.
    Leontini, J.S., Thompson, M.C.,Hourigan, K., 2006. The beginning of branching behaviour of vortex-induced vibration during two-dimensional flow. Journal of Fluids and Structures 22, 857-864.
    Mittal, S.,Kumar, V., 2001. Flow-induced vibrations of a light circular cylinder at Reynolds numbers 10e3 to 10e4. Journal of Sound and Vibration 245, 923-946.
    Noor, D.Z., Chern, M.J., Horng, T.L., 2009. An immersed boundary method to solve
    fluid-solid interaction problems. Computational Mechanics 44, 447-453.
    Parkinson, G., 1989. Phenomena and modelling of flow-induced vibrations of bluff bodies. Progress in Aerospace Science 26, 169-224.
    Pan, D., 2006. An immersed boundary method on unstructured cartesian meshes for
    incompressible flows with heat transfer. Numerical Heat Transfer Part B-Fundamentals 49, 277-297.
    Peskin, C.S., 1972. Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10, 252-271.
    Prasanth, T.K., Mittal, S., 2008. Vortex-induced vibrations of a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics 594, 463-491.
    Rosenfeld, M., Kwak, P., Vinokur, M., 1991. Unsteady incompressible Navier-Stokes equations. Journal of Computational Physics 94, 102-137.
    Roshko, A., 1953. On the development of turbulent wakes from vortex streets. NACA TN 2913.
    Sarpkaya, T., 1979. Vortex-induced oscillations. Journal of Applied Mechanics 46, 241-258.
    Sarpkaya, T., 2004. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures 19, 389-447.
    Shen, L.W., Chan, E.S., Lin, P.Z., 2009. Calculation of hydrodynamic forces acting on a submerged moving object using immersed boundary method. Computers & Fluids 38, 691-702.
    Shiels, D., Leonard, A., Roshko, A., 2001. Flow-induced vibration of a circular cylinder at limiting structural parameters. Journal of Fluids and Structures 15, 3-21.
    Singh, S.P., Mittal, S., 2005. Vortex-induced oscillations at low Reynolds numbers: Hysteresis and vortex-shedding modes. Journal of Fluids and Structures 20, 1085-1104.
    Su, S.W., Lai, M.C., Lin, C.A., 2007. An immersed boundary technique for simulating complex flows with rigid boundary. Computers & Fluids 36, 313-324.
    Tritton, D.J., 1959. Experiments on the flow past a circular cylinder at low Reynolds number. Journal of Fluid Mechanics 6, 547-567.
    Tseng, Y.H., Ferziger, J.H., 2003. A ghost-cell immersed boundary method for flow in complex geometry. Journal of Computational Physics 192, 593-623.
    Williamson, C.H.K., Govardhan, R., 2004. Vortex-induced vibrations. Annual Review of Fluid Mechanics 36, 413-455.
    Williamson, C.H.K., Roshko, A., 1988. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures 2, 355-381.
    Yusof, J.M., 1996. Interaction of massive particles with turbulence. Ph.D. thesis, Cornell University, USA.

    QR CODE