簡易檢索 / 詳目顯示

研究生: 張居裕
Jyu-yu Chang
論文名稱: 新穎主動有機發光二極體之畫素驅動電路設計與模擬
A Novel AMOLED Pixel Driving Circuit Design and Simulation
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
顏文正
Vicent Yen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 116
中文關鍵詞: 主動驅動有機發光二極體
外文關鍵詞: AMOLED (Active Matrix Organic Light Emitting Dio
相關次數: 點閱:309下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於本論文中,我們探討以低溫多晶矽薄膜電晶體(LTPS-TFTs)驅動之主動有機發光二極體(AMOLEDs)電壓補償畫素電路。首先,我們先對傳統畫素驅動電路(2T1C)與已發表之電壓補償電路(5T2C)進行模擬與討論。根據電路模擬的結果,傳統畫素架構易受不同薄膜電晶體特性的影響而造成有機發光二極體面板的不均勻,且有機發光二極體電流的平均錯誤率高達37.7 %。相對地,模擬結果顯示已發表之電壓補償電路(5T2C)藉由特定的補償方法可有效地減少有機發光二極體面板的不均勻性,其有機發光二極體電流的平均錯誤率可降低至0.7 %。
    為了要克服傳統畫素架構之不均勻性的問題,我們提出了一個新的電壓補償主動有機發光二極體之畫素電路與兩個修正的畫素電路,分別為 6T2C畫素電路,5T2C畫素電路和4T2C畫素電路。6T2C畫素電路為初步基礎的設計,模擬結果顯示其有機發光二極體電流的平均錯誤率僅3.27 %,因此可以使有機發光二極體電流與驅動電晶體(driving TFT)之臨界電壓(threshold voltage)幾乎無關。為了要改善6T2C畫素電路之開口率(aperture ratio)問題,藉由改變電路控制訊號我們可以去掉其中一顆電晶體使其成為5T2C畫素電路。模擬結果顯示其有機發光二極體電流的平均錯誤率僅3.79 %,因此本畫素電路可以成功地補償驅動電晶體之臨界電壓變異。此外,上述兩個電路(6T2C,5T2C)都可以將原來補償的時間由50 μs縮短至13 μs,這將有助於高解析度面板之發展。
    為了要改善5T2C畫素電路有機發光二極體電流的平均錯誤率與增加其開口率,我們又去掉一顆電晶體而提出了4T2C畫素電路。模擬結果顯示其有機發光二極體電流的平均錯誤率可降低至0.8 %,因此4T2C畫素電路有效地改善了由多晶矽薄膜電晶體特性不同所造成的不同臨界電壓之問題也改善了主動有機發光二極體面板的不均勻性。
    總而言之,本篇論文所提出的三個補償畫素電路均可有效地改善驅動電晶體不同臨界電壓之問題。與傳統的畫素結構(2T1C)相比,這些補償畫素電路都可以大幅提升面板的均勻性,因此在未來之主動有機發光二極體面板應用上極具潛力。


    In this thesis, driving circuits for active-matrix-organic light-emitting-diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method have been investigated.
    At first, conventional 2T1C circuit and published 5T2C pixel circuit proposed by J. H. Jung et al. are simulated and discussed. Simulation results show that conventional 2T1C pixel circuit has high non-uniformity due to the various characteristics of TFTs. The average error rate of the OLED current is up to 37.7 %. As for published 5T2C pixel circuit, it has very low non-uniformity of AMOLED displays by the special compensating method. The average error rate of the OLED current is only 0.7 %.
    In order to overcome the non-uniformity problem of conventional 2T1C circuit, we propose a new voltage programming AMOLED pixel design and two modified pixel circuits, which are composed of 6T2C, 5T2C, and 4T2C. The 6T2C circuit is the basic design in the beginning and the simulation result shows the average error rate of the OLED current is about 3.27% in the 6T2C circuit. Consequently, it is apparently that the OLED current is independent of the variation of threshold voltage. In order to improve the aperture ratio of 6T2C circuit, the 5T2C circuit is the first modified design by eliminate a TFT. It shows that the average error rate of the OLED current is only 3.79 % in the 5T2C pixel circuit. As a result, it is apparently that the 5T2C circuit can successfully compensate for the threshold voltage variation of driving TFT. Furthermore, both 6T2C and 5T2C pixel circuits can also shorten the compensating time from 50 μs to 13 μs, which is more suitable for the development of high-resolution displays. In order to improve the error rate of OLED current and the aperture ratio of 5T2C circuit, the 4T2C circuit is the second modified design by eliminate another TFT. It shows that the average error rate of the OLED current is only 0.8 %. Therefore, the simulation results demonstrate that the 4T2C circuit has high immunity to the threshold voltage deviation of poly-Si TFT characteristics and improve the current non-uniformity for AMOLED.
    In conclusion, these three proposed pixel circuits all successfully compensate for the threshold voltage variation of driving TFT and improve the current non-uniformity for AMOLED compared with conventional pixel circuit. Therefore, they could be the promising candidates for the AMOLED panel application in the future.

    Abstract (Chinese)I Abstract (English)III AcknowledgementV Table of ContentsVI Figure CaptionVIII Table ListXI Chapter 1 Introduction1 1.1 Overview of Organic Light Emitting Diode (OLED) Displays1 1.2 OLED Display Architecture2 1.2.1 Passive-matrix addressing2 1.2.2 Active-matrix addressing3 1.3 AMOLED Emission Structure4 1.4 Amorphous Silicon Thin Film Transistors (a-Si TFTs) and Low Temperature Poly-silicon Thin Film Transistors (LTPS TFTs) for AMOLEDs6 1.5 Motivation7 1.6 Thesis Organization8 Chapter 2 Architecture of Pixel Driving Circuits for AMOLED10 2.1 Introduction10 2.2 Digital Driving Method-Time Ratio Gray Scale Control12 2.3 Voltage Programming Driving Method15 2.3.1 Diode-connected compensation I15 2.3.2 Diode-connected compensation II17 2.4 Current Programming Driving Method19 2.5 Voltage Feedback Driving Method21 Chapter 3 Conventional 2T1C and A Published 5T2C Pixel Circuit for AMOLEDs23 3.1 Introduction23 3.2 AIM-SPICE and Poly-Si TFT Model25 3.2.1 AIM-SPICE25 3.2.2 Poly-Si TFT Model25 3.3 Conventional 2T1C Pixel Circuit 27 3.3.1 Circuit Operation27 3.3.2 Simulation Result and Discussion28 3.4 A Published 5T2C Pixel Circuit for AMOLEDs38 3.4.1 Circuit Operation38 3.4.2 Simulation Result and Discussion40 3.5 Summary53 Chapter 4 A New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for AMOLEDs54 4.1 Introduction54 4.2 A New Voltage Programming Pixel Circuit with LTPS TFTs for AMOLEDs57 4.2.1 Circuit Operation57 4.2.2 Simulation Result and Discussion60 4.3 Modified Voltage Programming Pixel Circuit (I)73 4.3.1 Circuit Operation73 4.3.2 Simulation Result and Discussion76 4.4 Modified Voltage Programming Pixel Circuit (II)89 4.4.1 Circuit Operation 89 4.4.2 Simulation Result and Discussion92 4.5 Summary105 Chapter 5 Conclusion and Future Work107 5.1 Conclusion107 5.2 Future Work108 References

    Reference:
    Chapter 1:
    [1.1] M. Pope, H. Kallmann, and P. Magnante, “Electroluminescence in organic crystals,” J. Chem. Phys., vol. 38, 1963, pp. 2042~3043.
    [1.2] C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes, ” Appl. Phys. Lett., vol.51, 1987, pp. 913-915.
    [1.3] C. Hosokawa, M. Matsuura, M. Eida, K. Fukuoka, H. Tokailin, and T. Kusumoto, “Full-color organic EL display,” in SID Tech. Dig., 1998, pp.7–10.
    [1.4] C. W. Lin, D. Z. Peng, R. Lee, Y. F. Shih, C. K. Jan, M. H. Hsieh, S. C. Chang, and Y. M. Tsai, “Advanced poly-Si device and circuitry for AMOLED and high-integration AMLCD,” in Int. Display Manufacturing Conf., 2005, pp. 315–318
    [1.5] G. Gu, P. E. Burrows, S. Venkatesh, and S. R. Forrest, Opt. Lett. 22, 1997, pp. 172.
    [1.6] H. Nakamura, C. Hosokawa, and T. Kusumoto, “Transient behavior of organic electroluminescent cells,” in Inorganic and Organic Electroluminescence/EL 96 Berlin, 1996, pp. 95.
    [1.7] C. Hosokawa, E. Eida, M. Matsuura, K. Fukuoka, H. Nakamura, and T. Kusumoto, “Organic multicolor EL display with fine pixels,” in Dig. Soc. Information Display Int. Symp., 1997, vol. 28, pp. 1073-1076.
    [1.8] R. M. A. Dawson, M.G. Kane, Z. Shen, D. A. Furst, S. Connor, J. Hsu, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang and S. Van Slyke, F. Chen, J. Shi, J. C. Sturm, M. H. Lu, “Active matrix organic light emitting diode pixel design using polysilicon thin film transistors,” IEEE Lasers and Electro-Optics Society Annual Meeting, 1998, pp.128-129.
    [1.9] S. H. Ju, S. H. Yu, J. H. Kwon, H. D. Kim, B. H. Kim, S. C. Kim, H. K. Chung, M. S. Weaver, M. H. Lu, R. C. Kwong, M. Hack, and J. J. Brown, “High performance 2.2”QCIF full color AMOLED displays based on electro-phosphorescence,” in SID Tech. Dig., 2002, pp. 1096-1099.
    [1.10] X. M. Yu, H. J. Peng, X. L. Zhu, J. X. Sun, M. Wong, H. S. Kwok, “Pure Aluminum as the Anode in Top Emission OLED Fabrication Process”, The 12th International Display Workshops in conjunction with Asia Display 2005 (IDW/AD’05), Dec, 2005, pp. 737-740.
    [1.11] M. J. Powell, “Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors ”, Appl. Phys. Lett. ,Vol.43, No.6, 1983, pp.597-599.
    [1.12]A. R. Hepbum, J. M. Marshall, C. Main, M, J. Powell, and C. V. Berkel, “Metastable defects in amorphous-silicon thin film transistors”, Phys. Rev. Lett., Vol.56, No.20, 1986, pp. 2215-2218 .
    [1.13] M. J. Powell, C. V. Berkel, and L. R. Hughes, “Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors ”, Appl. Phys. Lett., Vol.54, No.14, 1989, pp.1323-1325.
    [1.14] N. M. Johnson, F. A. Ponce, R. A. Street, and R. J. Nemanich, “Defects in single- crystal silicon induced by hydrogenation," Phys. Rev. B. Vol.35, No.8, 1987, pp. 4166- 4171.
    [1.15] R. A. Street and C. C. Tsai, “Fast and slow states at the interface of amorphous silicon and silicon nitride,” Appl. Phys. Lett., Vol.48, No.24, 1986, pp.1672-1674.
    [1.16] R. E. I. Schropp and J. F. Verwey, “Instability mechanism in hydrogenated amorphous silicon thin-film transistors,” Appl. Phys. Lett., Vol.50, No.26, 1987, pp.185-187.
    [1.17] S. W. -B. Tim and T. Shimoda, "Modeling and design of polysilicon drive circuits for OLED displays," in SID Tech. Dig., 2004, pp.1406-1409.
    [1.18] S. J. Bae, H. S. Lee, J. Y. Lee, J. Y. Park, and C.W. Han, “A novel pixel design for an active matrix organic light emitting diode display,” in Proc. IDRC, 2000, pp. 358–361.
    [1.19] S. M. Choi, O. K. Kwon, and H. K. Chung, “An improved voltage programmed pixel structure for large size and high resolution AM-OLED displays,” in SID Tech. Dig., 2004, pp. 260–263.
    [1.20]Y. He, R. Hattori, and J. Kanicki, “Four-thin film transistor pixel electrode circuits for active-matrix organic light-emitting displays,” Jpn. J. Appl. Phys., vol. 40, 2001, pp. 1199–1208.
    [1.21] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., 2000, pp. 912–915.
    [1.22] Y. C. Lin and H. P. D. Shsieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED displays,” IEEE Electron Device Lett., vol. 25, no. 11, Nov 2004, pp. 728–730.
    Chapter 2:
    [2.1] S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, no. 10, Oct. 2004, pp.690–692.
    [2.2] A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, and D. Striakhilev, “Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic,” IEEE J. Solid-State Circuits, vol. 39, no. 9, Sep. 2003, pp. 215–222.
    [2.3] Y. He, R. Hattori, and J. Kanicki, “Current-source a-Si:H thin-film transistor circuit for active-matrix organic light-emitting displays,” IEEE Electron Device Lett., vol. 21, Nov. 2000, pp. 590–592.
    [2.4] J. Goh, J. Jang, K. Cho, and C. Kim, “A new a-Si:H thin-film transistor pixel circuits for active matrix organic light-emitting diodes, ” IEEE Electron Device. Lett., vol. 24, no. 9, Sep. 2003, pp. 583–585.
    [2.5] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., 2000, pp. 912–915.
    [2.6] A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving schemes fora-Si and LTPS AMOLED displays,” J. Display Technol., vol. 1, Dec. 2005, pp.267–277.
    [2.7] A. Yumoto, M. Asano, H. Hasegawa, and M. Sekiya, “Pixel-driving methods for large-sized poly-Si AM-OLED displays,” in Proc. Int. Display Workshop, 2001, pp. 1395–1398
    [2.8] Y. C. Lin and H. P. D. Shsieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., vol. 25, no. 11, Nov. 2004, pp. 728–730.
    [2.9] Sang Hoon Jung, Hee Sun Shin, Jae Hoon Lee and Min Koo Han, “An AMOLED pixel for VT compensation of TFT and a p-type LTPS shift register by employing 1 phase clock signal,” in Proc. SID Tech. Dig., 2005, pp. 300–303.
    [2.10] J. C. Goh, J. Jang, K. S. Cho, and C. K. Kim, “A new a-Si:H thin-film transistor pixel circuit for active-matrix organic light-emitting diodes,” IEEE Electron Device Lett., vol. 24, no. 9, Sept. 2003, pp. 583–585.
    [2.11] Jae Hoon Lee, Woo Jin Nam, Sang Myeon Han and Min Koo Han, “OLED pixel design employing a novel current scaling scheme,” in SID Tech. Dig.,2003, pp. 490-493.
    [2.12] Shahin Jafarabadiashtiani, Gholamreza Chaji, Sanjiv Sambandan, Denis Striakhilev, Arokia Nathan and Peyman Servati, “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback,” in SID Tech. Dig., 2005, pp. 316-318.
    Chapter 3:
    [3.1] C. Hosokawa et al., SID, 1998, pp. 7.
    [3.2] “Special Issue on Small Molecule and Polymer Organic Devices,” IEEE Trans. on Electron Devices, Aug. 1997.
    [3.3] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. I. Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, and H. Ohshima, “Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display,” IEEE Trans. Electron Devices, vol. 46, no. 12, Dec. 1999, pp. 2282–2288.
    [3.4] J. H. Jung, H. Kim, S. P. Lee, U. C. Sung, J. S. Rhee, C. S. Ko, J. C. Goh, B. R. Choi,J. H. Choi, N. D. Kim, and K. Chung “A 14.1 inch Full Color AMOLED Display with Top Emission Structure and a-Si TFT Backplane,” in SID Tech. Dig., 2005, pp. 1538-1541.
    [3.5] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W.A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., 1998, pp. 875–878.
    [3.6] J. C. Goh, H. J. Chung, J. Jang, and C. H. Han, “A new pixel circuit for active matrix organic light emitting diodes,” IEEE Elect. Dev. Lett., vol 23, 2002, p. 544-546.
    Chapter 4:
    [4.1] Tatsuaki Funamoto, Yojiro Matsueda, Osamu Yokoyama, Akihito Tsuda, HiroshiTakeshita, Satoru Miyashita, “A 130-ppi, full-color polymer OLED display fabricated using an ink-jet process,” in SID Tech. Dig., 2002, pp. 899-901.
    [4.2] C. W. Lin, D. Z. Peng, R. Lee, Y. F. Shih, C. K. Jan, M. H. Hsieh, S. C. Chang, and Y. M. Tsai, “Advanced poly-Si device and circuitry for AMOLED and high-integration AMLCD,” in Int. Display Manufacturing Conf., 2005, pp. 315–318.
    [4.3] Wen-Chun Wang, Gwo-Sen Lin, Chih-Chung, Chun-Ming Huang, “Organic light emitting diode displays in Windell,” in Proceedings of International Displays Manufacturing Conference, 2003, pp. 53-56.
    [4.4] M. J. Powell, “Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors, ” Appl. Phys. Lett. ,Vol.43, No.6, pp.597-599 (1983).
    [4.5] A. R. Hepbum, J. M. Marshall, C. Main, M, J. Powell, and C. V. Berkel, “Metastable defects in amorphous-silicon thin film transistors”, Phys. Rev. Lett., Vol.56, No.20, 1986, pp. 2215-2218.
    [4.6] M. J. Powell, C. V. Berkel, and L. R. Hughes, “Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors ”, Appl. Phys. Lett., Vol.54, No.14, 1989, pp.1323-1325.
    [4.7] J. C. Goh, H. J. Chung, J. Jang, “A new pixel circuit for active-matrix organic light-emitting-diodes,” IEEE Electron Device Lett., vol. 23, no. 9, Sep. 2002, pp. 544–546.
    [4.8] J. C. Goh, J. Jang, K. S. Cho, and C. K. Kim, “A new a-Si:H thin-film transistor pixel circuit for active-matrix organic light-emitting diodes,” IEEE Electron Device Lett., vol. 24, no. 9, Sept. 2003, pp. 583–585.
    [4.9] J. C. Goh, C. K. Kim, and J. Jang, “A novel pixel circuit for active-matrix organic light-emitting diodes,” in Dig. Tech. Paper, SID Int. Symp., Baltimore, MD, 2003, pp. 494–497.
    [4.10] J. Lee, W. Nam, S. Jung, and M. Han, “A new current-scaling pixel circuit for AMOLED,” IEEE Electron Device. Lett., vol. 25, no. 5, May 2003, pp.280–282.
    [4.11] T. Sasaoka, M. Sekiya, A. Yumoto, J. Yamada, T. Hirano, Y. Iwase, T. Yamada, T. Ishibashi, T. Mori, M. Asano, S. Tamura, and T. Urabe, “A 13-inch AM-OLED display with top emitting structure and adaptive current mode programmed pixel circuit (TAC),” in Dig. Tech. Papers, SID Int. Symp., 2001, pp. 384–386.
    [4.12] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., 2000, pp. 912–915.
    [4.13] Y. C. Lin and H. P. D. Shsieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., vol. 25, no. 11, Nov. 2004, pp. 728–730.

    無法下載圖示 全文公開日期 2012/07/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2017/07/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE