簡易檢索 / 詳目顯示

研究生: 游欽富
Chin-Fu You
論文名稱: 高精度十位元1GHz二進位電流導向式數位至類比轉換器
A High Accuracy 10-Bit 1GHz Binary-Weighted Current-Steering D/A Converter
指導教授: 陳伯奇
Poki Chen
口試委員: 鍾勇輝
Yung-Hui Chung
陳景然
Ching-Jan Chen
盧志文
Chih-Wen Lu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 108
中文關鍵詞: 電流導向式數位至類比轉換器系統性不匹配複製-分割分流器
外文關鍵詞: Current-steering digital-to-analog converter, Systematic mismatch, Current splitter
相關次數: 點閱:275下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計實現一顆高精度十位元1GS/s電流導向式之數位至類比轉換器,在電流導向式的架構下有三種方式可供選擇,分別是單位電流源矩陣、二進位權重式和分段式架構,以往為了兼顧高速與高解析度的需求,通常會選擇分段式架構來實現,但分段式架構往往使得電路複雜度以及功耗大幅提升,為了在成本與性能之間做考量,本論文使用二進位權重式架構實現,探索二進位權重式架構的極限。傳統二進位權重式架構為了確保輸出電流的精準度,需以龐大的佈局陣列去匹配所有位元的電流源,佈局的複雜度以及面積隨之大幅拉升。因此本論文提出一種全新的複製-分割分流器架構,打斷位元間電流源的相依性,只需專注匹配每一位元的電流源,並藉由二階梯度消除(2nd Order Gradient Cancellation)佈局技巧,消除系統性不匹配的影響,以獲得高精度的輸出電流。
    此數位至類比轉換器使用TSMC 90nm 1P9M製程實現,操作電壓為1.2V,量測結果顯示積分非線性誤差(INL)介於+0.48 LSB ~ -0.55 LSB,微分非線性誤差(DNL)介於+0.36 LSB ~ -0.45 LSB。在1GHz取樣頻率下,輸入頻率為1.22MHz時,無突波動態範圍(SFDR)達59.05dB,功率消耗為22mW,核心晶片面積為0.29 mm2。


    A 10-bit 1GS/s current-steering digital-to-analog converter is proposed and implemented in this thesis. For current-steering DACs, there are three major architectures for implementation: Unary Current Source based, Binary-Weighted, and Segmented. Conventionally, segmented current-steering architecture was adopted for high accuracy DAC at the expense of complicated circuitry and high power consumption. For cost down and performance enhancement, this thesis adopts the binary-weighted architecture to explore the limits of this architecture. Accordingly, a current-splitter architecture along with the 2nd order gradient cancellation layout is utilized to ensure the required accuracy and ease circuit design.
    The DAC is implemented in a TSMC 90 nm 1P9M CMOS technology and the operation voltage is 1.2V. The integral nonlinearity (INL) and differential nonlinearity (DNL) are measured to be +0.48 ~ -0.55 LSB and +0.36~-0.45 LSB respectively. The DAC achieves a maximum spurious free dynamic range (SFDR) of 59.05 dB for 1.22 MHz input frequency at 1GHz sampling rate. The power consumption is 22 mW and the active area is merely 0.29 mm2.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖目錄 VI 表目錄 IX 第1章 緒論 1 1-1 研究背景與動機 1 1-2 相關研究發展 2 1-3 論文架構 3 第2章 數位至類比轉換器的基本原理 4 2-1 理想數位至類比轉換器 4 2-2 理想數位至類比轉換器特性 5 2-3 數位至類比轉換器之規格參數 6 2-3-1 靜態參數 6 2-3-2 動態參數 12 2-4 數位至類比轉換器之架構簡介 17 2-4-1 解碼器數位至類比轉換器架構 18 2-4-2 二進位權重式數位至類比轉換器架構 20 2-4-3 溫度計碼式數位至類比轉換器架構 24 2-4-4 混合式數位至類比轉換器架構 26 2-5 結論 28 第3章 數位至類比轉換器之設計考量 29 3-1 靜態誤差 29 3-1-1 電流源電晶體不匹配 30 3-1-2 電流源有限輸出阻抗分析 35 3-2 動態誤差 38 3-2-1 電流源開關組的非理想效應 38 3-2-2 數位訊號不同步 41 3-2-3 電流源之頻寬分析 42 3-3 結論 44 第4章 數位至類比轉換器之電路設計與實現 45 4-1 電流源架構介紹 46 4-1-1 電流源設計 47 4-1-2 改良後之電流源架構 49 4-1-3 電流鏡架構 50 4-1-4 單位電流源尺寸選擇 55 4-2 去突波栓鎖電路 60 4-3 偏壓電路 63 4-3-1 帶差參考電壓電路 64 4-4 晶片佈局考量 67 4-4-1 電流源佈局 69 第5章 電路模擬結果 71 5-1 晶片佈局圖 71 5-2 電路佈局時產生的寄生電阻問題及解決辦法 72 5-2-1 靜態後模擬INL、DNL問題與解決方法 72 5-2-2 動態後模擬SFDR、SNDR、ENOB問題與解決方法 73 5-3 靜態模擬結果 75 5-3-1 前模擬 75 5-3-2 後模擬 76 5-4 動態模擬結果 77 5-4-1 前模擬 78 5-4-2 後模擬 80 第6章 晶片量測結果與未來展望 83 6-1 晶片顯微照 83 6-2 量測板規劃 83 6-3 靜態量測 84 6-3-1 量測方法 84 6-3-2 量測結果 84 6-4 動態量測 85 6-4-1 量測方法 85 6-4-2 量測結果 85 6-5 晶片效能比較 91 6-6 結論與未來展望 92 參考文獻 93

    [1]F. Chou, Z. Chen, and C. Hung, "A 10-bit 250MS/s low-glitch binary-weighted digital-to-analog converter," in 2014 27th IEEE International System-on-Chip Conference (SOCC), 2014, pp. 231-235.
    [2]A. Hastings, The art of analog layout. Prentice Hall, 2006.
    [3]劉沛潔, "通訊系統中數位類比轉換器之電路設計," 系統晶片, pp. 58-76, 2005.
    [4]A. V. d. Bosch, M. Borremans, M. Steyaert, and W. Sansen, "A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter," in Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044), 2000, pp. 265-268.
    [5]S.-C. J. A.-I. J. o. E. Yi and Communications, "An 8-bit current-steering digital to analog converter," vol. 66, no. 5, pp. 433-437, 2012.
    [6]F. Chou and C. Hung, "Glitch Energy Reduction and SFDR Enhancement Techniques for Low-Power Binary-Weighted Current-Steering DAC," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 6, pp. 2407-2411, 2016.
    [7]B. Razavi, Principles of Data Conversion System Design. John Wiley, 1994.
    [8]L. Fang-Jie, Y. Yong-Sheng, L. Shang-Quan, and G. Ming-Lun, "Current switch driver and current source designs for high-speed current-steering DAC," in 2008 2nd International Conference on Anti-counterfeiting, Security and Identification, 2008, pp. 364-367.
    [9]S. H. Yang, K. S. Lee, S. Kim, and Y. M. Lee, "Charge-redistribution DAC with double bit processing in single capacitor," Electronics Letters, vol. 47, no. 5, pp. 312-313, 2011.
    [10]P. Eloranta, "A 14-bit D/A-converter with digital calibration," in 2006 IEEE International Symposium on Circuits and Systems, 2006, pp. 4 pp.-112.
    [11]A. V. d. Bosch, M. Steyaert, and W. Sansen, "An accurate statistical yield model for CMOS current-steering D/A converters," in 2000 IEEE International Symposium on Circuits and Systems (ISCAS), 2000, vol. 4, pp. 105-108 vol.4.
    [12]J. Bastos, M. S. J. Steyaert, A. Pergoot, and W. M. Sansen, "Influence of die attachment on MOS transistor matching," IEEE Transactions on Semiconductor Manufacturing, vol. 10, no. 2, pp. 209-218, 1997.
    [13]K. R. Lakshmikumar, R. A. Hadaway, and M. A. Copeland, "Characterisation and modeling of mismatch in MOS transistors for precision analog design," IEEE Journal of Solid-State Circuits, vol. 21, no. 6, pp. 1057-1066, 1986.
    [14]M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching properties of MOS transistors," IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, 1989.
    [15]X. Dai, C. He, H. Xing, D. Chen, and R. Geiger, An Nth order central symmetrical layout pattern for nonlinear gradients cancellation. 2005, pp. 4835-4838 Vol. 5.
    [16]G. A. M. V. D. Plas, J. Vandenbussche, W. Sansen, M. S. J. Steyaert, and G. G. E. Gielen, "A 14-bit intrinsic accuracy Q/sup 2/ random walk CMOS DAC," IEEE Journal of Solid-State Circuits, vol. 34, no. 12, pp. 1708-1718, 1999.
    [17]Y. Nakamura, T. Miki, A. Maeda, H. Kondoh, and N. Yazawa, "A 10-b 70-MS/s CMOS D/A converter," IEEE Journal of Solid-State Circuits, vol. 26, no. 4, pp. 637-642, 1991.
    [18]A. v. d. Bosch, M. Steyaert, and W. Sansen, "SFDR-bandwidth limitations for high speed high resolution current steering CMOS D/A converters," in ICECS'99. Proceedings of ICECS '99. 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.99EX357), 1999, vol. 3, pp. 1193-1196 vol.3.
    [19]J. Bastos, A. M. Marques, M. S. J. Steyaert, and W. Sansen, "A 12-bit intrinsic accuracy high-speed CMOS DAC," IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 1959-1969, 1998.
    [20]B. Razavi, Design of analog CMOS integrated circuits. McGraw-Hill College, 2000.
    [21]游爵豪, "實現在90 奈米製程之低電壓數位類比轉換器," 系統晶片, pp. 83-87, 2007.
    [22]M. Albiol, J. L. Gonzalez, and E. Alarcon, "Mismatch and dynamic modeling of current sources in current-steering CMOS D/A converters: an extended design procedure," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 1, pp. 159-169, 2004.
    [23]蔡宗彥, "A 12-bit 500-MSamples/s Current-steering CMOS D/A Converter," 交通大學, 新竹市, 2006.
    [24]P. R. Kinget, "Device mismatch and tradeoffs in the design of analog circuits," IEEE Journal of Solid-State Circuits, vol. 40, no. 6, pp. 1212-1224, 2005.
    [25]K. O. Sullivan, C. Gorman, M. Hennessy, and V. Callaghan, "A 12-bit 320-MSample/s current-steering CMOS D/A converter in 0.44 mm/sup 2," IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1064-1072, 2004.
    [26]K. Doris, A. Van Roermund, and D. Leenaerts, Wide-Bandwidth High Dynamic Range D/A Converters. Springer, 2006.
    [27]曾南雄, "無外部電容的CMOS低壓差線性穩壓器," 國立交通大學, 2007.
    [28]D. Hilbiber, "A new semiconductor voltage standard," in 1964 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, 1964, vol. VII, pp. 32-33.
    [29]K. E. Kuijk, "A precision reference voltage source," IEEE Journal of Solid-State Circuits, vol. 8, no. 3, pp. 222-226, 1973.
    [30]R. J. Widlar, "New developments in IC voltage regulators," IEEE Journal of Solid-State Circuits, vol. 6, no. 1, pp. 2-7, 1971.
    [31]C. Fayomi, G. Wirth, H. Achigui, and A. Matsuzawa, "Sub 1 V CMOS bandgap reference design techniques: a survey," Analog Integrated Circuits and Signal Processing, vol. 62, pp. 141-157, 02/01 2010.
    [32]P. E. Allen and D. R. Holberg, CMOS analog circuit design. New York: Oxford University Press, 2002.
    [33]R. J. Baker, CMOS circuit design, layout, and simulation. New York: IEEE Press, 2010.
    [34]T. Miki, Y. Nakamura, M. Nakaya, S. Asai, Y. Akasaka, and Y. Horiba, "An 80-MHz 8-bit CMOS D/A converter," IEEE Journal of Solid-State Circuits, vol. 21, no. 6, pp. 983-988, 1986.
    [35]C. Yonghua and R. L. Geiger, "Switching sequence optimization for gradient error compensation in thermometer-decoded DAC arrays," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 7, pp. 585-595, 2000.
    [36]P. Palmers and M. S. J. Steyaert, "A 10–Bit 1.6-GS/s 27-mW Current-Steering D/A Converter With 550-MHz 54-dB SFDR Bandwidth in 130-nm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 11, pp. 2870-2879, 2010.
    [37]W. Cheng, M. Hsieh, S. Hung, S. Hung, and C. C. Chen, "A 10-bit current-steering DAC for HomePlug AV2 powerline communication system in 90nm CMOS," in 2013 IEEE International Symposium on Circuits and Systems (ISCAS), 2013, pp. 2034-2037.
    [38]W. Tseng and C. Pao-Cheng, "A 960MS/s DAC with 80dB SFDR in 20nm CMOS for multi-mode baseband wireless transmitter," in 2014 Symposium on VLSI Circuits Digest of Technical Papers, 2014, pp. 1-2.
    [39]N. Pal, P. Nandi, R. Biswas, and A. G. Katakwar, "Placement-Based Nonlinearity Reduction Technique for Differential Current-Steering DAC," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 233-242, 2016.
    [40]W. Lin, H. Huang, and T. Kuo, "A 12-bit 40 nm DAC Achieving SFDR > 70 dB at 1.6 GS/s and IMD < –61dB at 2.8 GS/s With DEMDRZ Technique," IEEE Journal of Solid-State Circuits, vol. 49, no. 3, pp. 708-717, 2014.
    [41]W. Lin and T. Kuo, "A Compact Dynamic-Performance-Improved Current-Steering DAC With Random Rotation-Based Binary-Weighted Selection," IEEE Journal of Solid-State Circuits, vol. 47, no. 2, pp. 444-453, 2012.
    [42]H.-Y. Huang and T.-H. J. I. J. o. S.-S. C. Kuo, "A 0.07-mm² 162-mW DAC Achieving> 65 dBc SFDR and<-70 dBc IM3 at 10 GS/s With Output Impedance Compensation and Concentric Parallelogram Routing," 2020.

    無法下載圖示 全文公開日期 2025/08/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE