簡易檢索 / 詳目顯示

研究生: 洪稟凱
Bing-Kai Hong
論文名稱: 實作第五代新無線電中基於Kubernetes的CU/DU分割平台
Implementation of a Kubernetes-Based CU/DU Split Platform for 5G New Radio
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 黃琴雅
Chin-Ya Huang
張世豪
Shih-Hao Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 34
中文關鍵詞: 無線電存取網路虛擬化下一代無線前傳接口OpenAirInterface5G 行動通訊技術Kubernetes
外文關鍵詞: Radio access network virtualization, Next Generation Fronthaul Interfaces, OpenAirInterface, 5G radio access network, Kubernetes
相關次數: 點閱:392下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線電存取網路虛擬化旨為將基礎建設與無線電資源的抽象化與共享化, 其實現軟體無線電技術,將基地台區分為硬體遠端射頻 RRH 與軟體基頻元件 BBU,可以大幅地降低佈署與營運的成本、節約能源並且提高資源使用效率,故 其為達成 5G 行動通訊網路高效率與低延遲之嚴格要求的關鍵技術,而 5G 新 無線電中,3GPP 又將 eNB 分割成 CU (Centralized Unit) 與 DU (Distributed Unit) 兩個部分,希望能增加網路流量處理速度與網路頻寬和降低網路延遲。 本論文針對集中式無線電存取網路虛擬化,利用 USRP 硬體,結合開源軟體 OpenAirInterface,並且導入開源容器技術 Docker,且利用 Kubernetes 進 行管理,實作可攜、低價且節能的 5G 無線電存取網路虛擬化測試平台,完整地包含 BBU 資源池、與核心網路等元件。在此測試平台中,我們透過 Kubernetes 管理輕量化的 Docker 動態開關容器而能有效率地配置 BBU 給 RRH;降低佈署 成本與提高使用效率。整體規劃不僅將探討滿足 5G 行動通訊技術所需的關鍵特 性,並在此測試平台上試驗各種可能的解法與可行性。


    Radio access network virtualization, its main concept is to abstract and share infrastructure the radio resources. To implement the software radio technology, the base station is splitted into a hardware remote radio frequency RRH and a software base frequency component BBU, which can significantly reduce the cost of deployment and operation, save energy and improve resource efficiency. Therefore, it is a key technology to achieve the strict requirements of 5G mobile communication network with high efficiency and low latency. And in the 5G new radio, 3GPP further splits the eNB into two parts: CU (Centralized Unit) and DU (Distributed Unit), which hope to increase network traffic processing speed, network bandwidth and reduce network latency.
    Our paper addresses the virtualization of centralized radio access networks, use USRP hardware and combined with OpenAirInterface, which is the open source software, and use Docker, which is open source container technology, we also use Kubernetes for management, implement a portable, low-cost and energy-efficient 5G radio access network virtualization experiment platform, which is completely includes components such as the BBU resource pool and the core network.
    In our experiment platform, we manage lightweight Docker through Kubernetes, and dynamically switch containers to efficiently configure BBUs to RRHs, which will reduce deployment costs and increase efficiency. The overall plan will not only explore the key features needed to meet 5G mobile communication technologies, also experiment various possible solutions and feasibility on our experiment platform.

    Chinese Abstract . . . . . 1 Abstract.......... 2 Table of Contents..... 3 List of Tables ....... 4 List of Illustrations . . . . 5 Introduction................................... 6 Related Work.................................. 10 2.1 CRAN and NGFI............................. 10 2.2 CU and DU virtualization ........................ 10 KVS-RAN (Kubernetes-Based CU/DU Split Experiment Platform) . . . . 12 3.1 KVS-RAN................................. 12 Experiment ................................... 19 4.1 Experiment set up ............................ 19 Performance evaluation............................. 24 5.1 Performance Evaluation of experiment ................. 24 Conclusion.................................... 28 References...................................... 29

    [1] M. Richart, J. Baliosian, J. Serrat, and J.-L. Gorricho, “Resource slicing in vir- tual wireless networks: A survey,” IEEE Transactions on Network and Service Management, vol. 13, no. 3, pp. 462–476, 2016.
    [2] S. Chen and J. Zhao, “The requirements, challenges, and technologies for 5g of terrestrial mobile telecommunication,” IEEE communications magazine, vol. 52, no. 5, pp. 36–43, 2014.
    [3] 5GPP, “White paper of view on 5g architecture,” 2017.
    [4] F. Kaltenberger, R. Knopp, N. Nikaein, D. Nussbaum, L. Gauthier, and C. Bon- net, “Openairinterface: Open-source software radio solution for 5g,” in Euro- pean Conference on Networks and Communications (EUCNC), Paris, France, 2015.
    [5] C. Y. Yeoh, M. H. Mokhtar, A. A. A. Rahman, and A. K. Samingan, “Perfor- mance study of lte experimental testbed using openairinterface,” in Advanced Communication Technology (ICACT), 2016 18th International Conference on. IEEE, 2016, pp. 617–622.
    [6] J. Wu, Z. Zhang, Y. Hong, and Y. Wen, “Cloud radio access network (c-ran): a primer,” IEEE Network, vol. 29, no. 1, pp. 35–41, 2015.
    [7] C-RAN. [Online]. Available: http://en.wikipedia.org/wiki/C-RAN
    [8] China Mobile Research Institute, “The 1st C-RAN International Workshop,” Available: http://labs.chinamobile.com/focus/C-RAN.
    [9] C. Liang and F. R. Yu, “Wireless network virtualization: A survey, some re- search issues and challenges,” vol. 17, no. 1, pp. 358–380, Aug. 2014.
    [10] ——, “Wireless virtualization for next generation mobile cellular networks,” vol. 22, no. 1, pp. 61–69, Feb. 2015.
    [11] S. Costanzo, D. Xenakis, N. Passas, and L. Merakos, “OpeNB: A framework for virtualizing base stations in LTE networks,” in Proc. IEEE ICC 2014, June 2014, pp. 3148–3153.
    [12] P. Rost, C. J. Bernardos, A. D. Domenico, M. D. Girolamo, M. Lalam, A. Maeder, D. Sabella, and D. Wübben, “Cloud technologies for flexible 5G radio access networks,” vol. 52, no. 5, pp. 68–76, May 2014.
    [13] P. Rost, I. Berberana, A. Maeder, H. Paul, V. Suryaprakash, M. Valenti, D. Wübben, A. Dekorsy, and G. Fettweis, “Benefits and challenges of virtu- alization in 5G radio access networks,” vol. 53, no. 12, pp. 75–82, Dec. 2015.
    [14] D. Zeng, J. Zhang, S. Guo, L. Gu, and K. Wang, “Take renewable energy into cran toward green wireless access networks,” IEEE network, vol. 31, no. 4, pp. 62–68, 2017.
    [15] “Common public radio interface(cpri):ecpri 1.0 specification,” 2017.
    [16] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks-a technology overview,” vol. 17, no. 1, pp. 405–426, Mar. 2015.
    [17] L. Valcarenghi, K. Kondepu, F. Giannone, and P. Castoldi, “Requirements for 5g fronthaul,” in Transparent Optical Networks (ICTON), 2016 18th Interna- tional Conference on. IEEE, 2016, pp. 1–5.
    [18] I. Chih-Lin, J. Huang, Y. Yuan, S. Ma, and R. Duan, “Ngfi, the xhaul,” in Globecom Workshops (GC Wkshps), 2015 IEEE. IEEE, 2015, pp. 1–6.
    [19] J. Gutiérrez, N. Maletic, D. Camps-Mur, E. García, I. Berberana, M. Anas- tasopoulos, A. Tzanakaki, V. Kalokidou, P. Flegkas, D. Syrivelis, et al., “5g- xhaul: a converged optical and wireless solution for 5g transport networks,” Transactions on Emerging Telecommunications Technologies, vol. 27, no. 9, pp. 1187–1195, 2016.
    [20] O. Al-Khatib, W. Hardjawana, and B. Vucetic, “Wireless networks virtualisa- tion: Traffic modeling and spectrum sharing,” in Proc. IEEE ICC 2015, June 2015, pp. 5859–5864.
    [21] C. Liang and F. R. Yu, “Virtual resource allocation in information-centric wire- less virtual networks,” in Proc. IEEE ICC 2015, June 2015, pp. 3915–3920.
    [22] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud ran for mobile networks—a technology overview,” IEEE Communications surveys & tutorials, vol. 17, no. 1, pp. 405–426, 2015.
    [23] O. Chabbouh, S. B. Rejeb, N. Agoulmine, and Z. Choukair, “Cloud ran ar- chitecture model based upon flexible ran functionalities split for 5g networks,” in Advanced Information Networking and Applications Workshops (WAINA), 2017 31st International Conference on. IEEE, 2017, pp. 184–188.
    [24] O. Neji, N. Chendeb, O. Chabbouh, N. Agoulmine, and S. B. Rejeb, “Expe- rience deploying a 5g c-ran virtualized experimental setup using openairinter- face,” in Ubiquitous Wireless Broadband (ICUWB), 2017 IEEE 17th Interna- tional Conference on. IEEE, 2017, pp. 1–5.
    [25] China Mobile Research Institute., “White paper of next generation fronthaul interface,” 2015.
    [26] D. Harutyunyan and R. Riggio, “Flexible functional split in 5g networks,” in
    Network and Service Management (CNSM), 2017 13th International Conference
    on. IEEE, 2017, pp. 1–9.
    [27] C. Kilinc, J. F. Monserrat, M. C. Filippou, N. Kuruvatti, A. A. Zaidi, I. Da Silva, and M. Mezzavilla, “New radio 5g user plane design alternatives: One 5g air interface framework supporting multiple services and bands,” in Globecom Workshops (GC Wkshps), 2016 IEEE. IEEE, 2016, pp. 1–6.
    [28] P. Arnold, N. Bayer, J. Belschner, and G. Zimmermann, “5g radio access net- work architecture based on flexible functional control/user plane splits,” in Net- works and Communications (EuCNC), 2017 European Conference on. IEEE, 2017, pp. 1–5.
    [29] N. Makris, P. Basaras, T. Korakis, N. Nikaein, and L. Tassiulas, “Experimen- tal evaluation of functional splits for 5g cloud-rans,” in IEEE International Conference on Communications (ICC), 2017.
    [30] N. Makris, C. Zarafetas, P. Basaras, T. Korakis, N. Nikaein, and L. Tassiulas, “Cloud-based convergence of heterogeneous rans in 5g disaggregated architec- tures.”
    [31] C. Kilinc, M. Ericson, P. Rugeland, I. Da Silva, A. Zaidi, O. Aydin, V. Venkata- subramanian, M. C. Filippou, M. Mezzavilla, N. Kuruvatti, et al., “5g multi-rat integration evaluations using a common pdcp layer,” in Vehicular Technology Conference (VTC Spring), 2017 IEEE 85th. IEEE, 2017, pp. 1–5.
    [32] F. Giannone, H. Gupta, K. Kondepu, D. Manicone, A. Franklin, P. Castoldi, and L. Valcarenghi, “Impact of ran virtualization on fronthaul latency bud- get: An experimental evaluation,” in Globecom Workshops (GC Wkshps), 2017
    IEEE. IEEE, 2017, pp. 1–5.
    [33] Open Air Interface project official site. [Online]. Available: http:// openairinterface.eurecom.fr/
    [34] I. Chih-Lin, H. Li, J. Korhonen, J. Huang, and L. Han, “Ran revolution with ngfi (xhaul) for 5g,” Journal of Lightwave Technology, vol. 36, no. 2, pp. 541– 550, 2018.
    [35] X.-L. Xie, P. Wang, and Q. Wang, “The performance analysis of docker and rkt based on kubernetes,” in 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). IEEE, 2017, pp. 2137–2141.
    [36] USRP. [Online]. Available: http://www.ettus.com/
    [37] A. M. Joy, “Performance comparison between linux containers and virtual ma- chines,” in Computer Engineering and Applications (ICACEA), 2015 Interna- tional Conference on Advances in. IEEE, 2015, pp. 342–346.
    [38] P. Sharma, L. Chaufournier, P. Shenoy, and Y. Tay, “Containers and virtual machines at scale: A comparative study,” in Proceedings of the 17th Interna- tional Middleware Conference. ACM, 2016, p. 1.
    [39] Docker official site. [Online]. Available: https://www.docker.com/
    [40] D. Bernstein, “Containers and cloud: From LXC to Docker to Kubernetes,” vol. 1, no. 3, pp. 81–84, Sept. 2014.
    [41] ——, “Containers and cloud: From lxc to docker to kubernetes,” IEEE Cloud Computing, no. 3, pp. 81–84, 2014.
    [42] C.-C. Chang, S.-R. Yang, E.-H. Yeh, P. Lin, and J.-Y. Jeng, “A kubernetes- based monitoring platform for dynamic cloud resource provisioning,” in GLOBECOM 2017-2017 IEEE Global Communications Conference. IEEE, 2017, pp. 1–6.
    [43] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs Containerization to support PaaS,” in Proc. IEEE IC2E 2014, Mar. 2014, pp. 610–614.

    QR CODE