簡易檢索 / 詳目顯示

研究生: 王信惟
Hsin-Wei Wang
論文名稱: 語音信號渾沌加密演算法的設計與實現
Design and Implementation of Chaotic Encryption Algorithm for Voice Signals
指導教授: 楊振雄
Cheng-Hsiung Yang
口試委員: 郭鴻飛
Hung-Fei Kuo
郭永麟
Yong-Lin Kuo
吳常熙
Chang-Shi Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 84
中文關鍵詞: 四維渾沌系統互斥或運算語音加密無線傳輸可程式化晶片系統現場可程式閘陣列
外文關鍵詞: Four-dimensional chaotic system, XOR, Sound encryption, Wireless transmission, SOPC, FPGA
相關次數: 點閱:393下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文設計了一種加密演算法,演算法的金鑰基於渾沌系統產生。為此我們
提出了一個四維的渾沌系統,之後以相圖分析與李亞普諾夫指數以及 Random
NIST 測試對渾沌系統的特性進行驗證。經驗證後,我們以尤拉方法取得渾沌系
統的離散時間訊號。而金鑰產生器依照渾沌系統的離散時間訊號與明文檔案的特
徵值產生兩個金鑰序列。這些金鑰序列在加密演算法中分別被用於排列運算、擴
散運算對明文檔案完成加密。
接下來我們將加密演算法和無線音訊傳輸系統實現到基於FPGA的SOPC系
統之上,所使用的硬體為 Altera 的 DE10 Standard 開發版。發送端,系統會讀入
音訊檔案,然後呼叫加密演算法將圖像檔案加密,待音訊檔加密完成後將密文寫
入 SD Card,再將密文透過無線發射器傳送到傳送到另一塊開發版上,接收端系
統會呼叫加密演算法將密文解密,待密文解密完成後將明文寫入到 SD Card 上。
此外系統在讀入、接收音訊檔以及加密、解密檔案後都會將處理後的資料透過
WM7831 端口播放音訊。
最後我們透過對多個密文進行直方圖分析、相關性係數分析、差分攻擊分析
以及熵值分析,驗證加密系統的安全性。並對本論文中基於 FPGA 的 SOPC 加密
傳輸系統未來改進方向提出建議。


This thesis designs a cryptographic algorithm. The key of the algorithm is
generated based on the chaotic system. To this end, we propose a four-dimensional
chaotic system, and then verify the characteristics of the chaotic system with phase
diagram analysis, Lyapunov exponent and NIST test. After verification, we obtained
the discrete time signal of the chaotic system by the Euler method. The key generator
generates two key sequences according to the discrete time signal of the chaotic
system and the eigenvalues of the plaintext file. These key sequences are used for the
permutation operation in the encryption algorithm, and the diffusion operation
encrypts the plaintext file.
Next, we implemented the encryption algorithm and wireless audio transmission
system on the FPGA-based SOPC system. The hardware used is Altera's DE10
standard development version. At the sending end, the system reads the audio file, and
then calls the encryption algorithm to encrypt the image file. After the audio file is
encrypted, the ciphertext is written to the SD card, and then the ciphertext is
transmitted to the other through the wireless transmitter. On the version, the receiving
end, the system will call the encryption algorithm to decrypt the ciphertext, and after
the ciphertext decryption is completed, the plaintext will be written to the SD card. In
addition, the system reads, receives audio files and encrypts, and decrypts the files
and then plays the processed data through the WM7831 port.
Finally, we verify the security of the encryption system by performing histogram
analysis, correlation coefficient analysis, differential attack analysis and entropy
analysis on multiple ciphertexts. And put forward suggestions for the future
improvement direction of FPGA-based SOPC encryption transmission system in this
thesis.

摘要 i Abstract ii 誌謝 iv CONTENTS v List of Figure vii List of Table xii Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Literature Review 1 1.3 Motivation and Purpose 3 1.4 Research Method 4 Chapter 2 Encryption Algorithm Design 7 2.1 Chaotic System Design 7 2.1.1 Formulation of the Model 10 2.1.2 NIST SP 800 Test 20 2.2 Encryption Algorithm 29 2.2.1 Speech data type 29 2.2.2 Generate initial value by SHA-256 31 2.2.3 Purpose of new chaotic encryption algorithm 34 2.2.4 Purpose of new chaotic decryption algorithm 40 2.2.5 Flow of Encryption and Decryption Algorithm 42 Chapter 3 FPGA Implementation 44 3.1 Development environment 44 3.1.1 FPGA DE10-Standard 44 3.1.2 Intel Quartus Prime 46 3.2 FPGA chaotic system implementation 47 3.2.1 IEEE Standard for Floating-Point Arithmetic 47 3.2.2 Chaos System Discretization 48 3.2.3 Chaotic Generator Implementation 48 3.2.4 Chaotic Generator Verification 52 3.3 Internal and External Communication 53 3.3.1 Internal communication between HPS and FPGA 53 3.3.2 External communication between two boards by using wireless transmission. 56 3.4 FPGA Sound Encryption System Design 57 Chapter 4 59 4.1 Test Speech 59 4.2 Histogram Analysis 64 4.3 Correlation Analysis 71 4.4 Differential Attack Analysis 77 4.5 Information Entropy Analysis 81 Chapter 5 Conclusion 83 5.1 Conclusion 83 5.2 Future Work 84 Reference 85

1. Shannon, C. E. (1949). Communication theory of secrecy systems. Bell Labs Technical Journal, 28(4), 656-715.
2. Wightman, A. S. (1968). Problèmes Ergodiques de la Mécanique Classique. VI Arnold and A. Avez. Gauthier-Villars, Paris, 1967. iv+ 243 pp., illus. Paper, 48 F. Monographies Internationales de Mathématiques Modernes.
3. Matthews, R. (1989). On the derivation of a “chaotic” encryption algorithm. Cryptologia, 13(1), 29-42.
4. Scharinger, J., & Pichler, F. (1996). Effcient image encryption based on chaotic maps. Pattern Recognition, 159-170.
5. Fridrich, J. (1998). Symmetric ciphers based on two-dimensional chaotic maps. International Journal of Bifurcation and chaos, 8(06), 1259-1284.
6. Hun-Chen, C., Jui-Cheng, Y., & Jiun-In, G. (2002, December). Design of a new cryptography system. In Pacific-Rim Conference on Multimedia (pp. 1041-1048). Springer, Berlin, Heidelberg.
7. Feki, M., Robert, B., Gelle, G., & Colas, M. (2003). Secure digital communication using discrete-time chaos synchronization. Chaos, Solitons & Fractals, 18(4), 881-890.
8. Yen, J. C., Chen, H. C., & Wu, S. M. (2005, May). Design and implementation of a new cryptographic system for multimedia transmission. In Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on (pp. 6126-6129). IEEE.
9. Sun, WQ., Wang, L., Wang, J., Li, H., and Wu, QY. (2018). Optical image encryption using gamma distribution phase masks in the gyrator domain. Journal of the European Optical Society-Rapid Publications, 14, 1-10.
10. Pan, HL., Lei, YM., Jian, C. (2018). Research on digital image encryption algorithm based on double logistic chaotic map. EURASIP Journal on Image and Video Processing, 142, 1-10.
11. Alawida, M., Samsudin, A., Sen Teh, J., Alkhawaldeh, RS. (2019). A new hybrid digital chaotic system with applications in image encryption. Signal processing, 160, 45-58.
12. Mani, P., Rajan, R., Shanmugam, L., Joo, YH. (2019). Adaptive control for fractional order induced chaotic fuzzy cellular neural networks and its application to image encryption. Information Sciences, 491, 74-89.
13. Gong, LH., Qiu, KD., Deng, CZ., Zhou, NR. (2019). An image compression and encryption algorithm based on chaotic system and compressive sensing. Optics and Laser Technology, 115, 257-267.
14. Harpreet, K., Neelofar, S. (2017). A Study for Applications of Histogram in Image Enhancement, The International Journal of Engineering and Science (IJES), 6, 59-63.
15. Agustin, G., Ana, S., Gustavo, G. (2006). The Correlation Coefficient: An Overview, Critical Reviews in Analytical Chemistry, 36(1), 41-59.
16. Wu, Y., Zhou, Y., Saveriades, G., Agaian, S., Noonan, J. P., & Natarajan, P. (2013). Local Shannon entropy measure with statistical tests for image randomness. Information Sciences, 222, 323-342.
17. Mahmoud, F., Mohamed, S., Yasser, K., Salwa , E. (2017). Securing digital voice communication using non-autonomous modulated chaotic signal, journal of information security and applications, 34, 243-250.
18. Maher, K., Ali, M. (2017). Combined speech compression and encryption using chaotic compressive sensing with large key size, The Institution of Engineering and Technology(IET), 12, 214-218.
19. Bahrami, S., & Naderi, M. (2012). Image encryption using a lightweight stream encryption algorithm. Advances in Multimedia, 2012, 1-8.
20. Janakiraman, S., Thenmozhi, K., Rayappan, J. B. B., & Amirtharajan, R. (2018). Lightweight chaotic image encryption algorithm for real-time embedded system: Implementation and analysis on 32-bit microcontroller. Microprocessors and Microsystems, 56, 1-12.
21. Daode, Z., Yurong, P., Xinyu, H. (2012). Design of High-Speed Parallel Data Interface Based on ARM & FPGA, Journal of Computers, 7, 804-809.
22. P. Sathiyamurthi and S. Ramakrishnan (2017). Speech encryption using chaotic shift keying for secured speech communication, EURASIP Journal on Audio, Speech, and Music Processing, 20, 1-8.
23. Boriga, R., Dăscălescu, A. C., & Priescu, I. (2014). A new hyperchaotic map and its application in an image encryption scheme. Signal Processing: Image Communication, 29(8), 887-901.
24. Wu, Y., Noonan, J. P., & Agaian, S. (2011). NPCR and UACI randomness tests for image encryption. Cyber journals: multidisciplinary journals in science and technology, Journal of Selected Areas in Telecommunications (JSAT), 1(2), 31-38.
25. Vanhoef, M., & Piessens, F. (2017, October). Key reinstallation attacks: Forcing nonce reuse in WPA2. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (pp. 1313-1328). ACM.
26. Jin, S., Cho, J., Dai Pham, X., Lee, K. M., Park, S. K., Kim, M., & Jeon, J. W. (2010). FPGA design and implementation of a real-time stereo vision system. IEEE transactions on circuits and systems for video technology, 20(1), 15-26.
27. Roberto, B. Angeles, M. Sergio, S. Daniel, W. (2015).When chaos meets hyper chaos : 4DRösslermodel, 379, 2300-2305.
28. Elert, G. (2016). 4.3 Lyapunov Exponent – The Chaos Hypertextbook. Retrieved from https://hypertextbook.com/chaos/lyapunov-1/
29. Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16(3), 285-317.
30. Calculation, V. (2004). Calculation Lyapunov Exponents for ODE. Retrieved from https://ww2.mathworks.cn/matlabcentral/fileexchange/4628-calculation-lyapunov-exponents-for-ode
31. Andrew, R.,Juan, S.,James, N., Miles, S., Elaine, B. (2010) A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, Journal of Research of NIST.
32. Wu, Hou-Cheng(2018)。Implementation of Encryption Algorithm and Wireless Image Transmission System on FPGA, Unpublished, No.43, Section 4, Keelung Road, Daan District, Taipei City.

無法下載圖示 全文公開日期 2024/07/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE